精英家教网 > 初中数学 > 题目详情
2.如图1,△ABC的边BC的中垂线DM交∠BAC的平分线AD于D,DE⊥AB于点E,DF⊥AC于F.连接DB、DC.
(1)求证:△DBE≌△DFC.
(2)求证:AB+AC=2AE;
(3)如图2,若△ABC的边BC的中垂线DM交∠BAC的外角平分线AD于D,DE⊥AB于点E,且AB>AC,写出AE、BE、AC之间的等量关系.(不需证明,只需在图2中作出辅助线、说明证哪两个三角形全等即可).

分析 (1)根据线段垂直平分线的性质得到DB=DC,根据角平分线的性质得到DE=DF,由全等三角形的判定定理即可得到结论;
(2)根据全等三角形的性质得到AE=AF,BE=CF,等量代换即可得到结论;
(3)如图2,过D作DN⊥AC,垂足为N,连接DB、DC,根据线段垂直平分线的性质和角平分线的性质得到DN=DE,DB=DC,推出Rt△DBE≌Rt△DCN(HL),根据全等三角形的性质得到BE=CN,由于Rt△DEA≌Rt△DNA(HL),根据全等三角形的性质得到AN=AE,等量代换即可得到结论.

解答 (1)证明:∵DM垂直平分BC,
∴DB=DC,
∵∠1=∠2,DE⊥AB,DF⊥AC,
∴DE=DF,
在Rt△DEB与Rt△DFC中,
$\left\{\begin{array}{l}{DB=DC}\\{DE=DF}\end{array}\right.$,
∴Rt△DEB≌Rt△DFC;

(2)∵∠AED=∠AFD=90°,
在Rt△ADE≌Rt△ADF中,
$\left\{\begin{array}{l}{DE=DF}\\{AD=AD}\end{array}\right.$,
∴Rt△ADE≌Rt△ADF(HL),
∴AE=AF,
又∵Rt△DEB≌Rt△DFC,
∴BE=CF,
∴AB+AC=AE+BE+AF-CF=2AE;

(3)BE=AE+AC.
证明:如图2,过D作DN⊥AC,垂足为N,连接DB、DC,
则DN=DE,DB=DC,
又∵DE⊥AB,DN⊥AC,
∴∠DEB=∠DNC=90°,
在Rt△DBE和Rt△DCN中,
$\left\{\begin{array}{l}{DB=DC}\\{DF=DN}\end{array}\right.$,
∴Rt△DBE≌Rt△DCN(HL)
∴BE=CN,
在Rt△DEA和Rt△DNA中,
$\left\{\begin{array}{l}{AD=AD}\\{DE=DN}\end{array}\right.$,
∴Rt△DEA≌Rt△DNA(HL),
∴AN=AE,
∴BE=AC+AN=AC+AE,
即BE=AE+AC.

点评 本题考查了全等三角形的性质和判定,线段的垂直平分线定理,角平分线性质等知识点,会添加适当的辅助线,会利用中垂线的性质找出全等的条件是解此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.计算:
(1)(-2x23+x4•x2
(2)(6a4b-3a2)÷(-3a2
(3)(2-x)(x-2)
(4)20142-2015×2013.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,∠C是⊙O的圆周角,∠C=38°,则∠OAB=(  )度.
A.52B.38C.60D.76

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.把方程x2-4x-6=0配方成为(x+m)2=n的形式,结果应是(  )
A.(x-4)2=2B.(x-2)2=6C.(x-2)2=8D.(x-2)2=10

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.若y=$\sqrt{x-2}$+$\sqrt{2-x}$-3,则代数式x+y的值=-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.计算:
(1)$\sqrt{18}$+$\frac{1}{5}$$\sqrt{50}$-4$\sqrt{5}$×$\sqrt{\frac{1}{10}}$
(2)($\sqrt{3}$+1)($\sqrt{3}$-1)-$\sqrt{(-3)^{2}}$+$\frac{1}{\sqrt{5}-2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,正方形ABCD中,点P以1cm/s的速度从点A出发按箭头方向运动,到达点D停止,△PAD的面积y(cm2)与运动时间x(s)之间的函数关系如图所示.(规定:点P在点A、D时,y=0)
发现:
(1)AB=6cm,当x=17(s)时,y=3cm2
(2)当点P在线段BC上运动时,y的值保持不变;
拓展:求当0<x<6及12<x<18时,y与x之间的函数关系式.
探究:当x(s)的值为多少时,y的值等于15cm2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如下图所示,将长方形ABCD的一角折起来,使得B点和E点重合,而通过E点可以将AD边3等分.求FG的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图1,在△ABC中,∠ACB=90°,AC=BC=2,D为AC中点,以点A为直角顶点作△DEF,使E点与A点重合,∠FED=90°,EF=BC,DF与AB交于点点G.
(1)求AG:BG的值;
(2)如图2,将△EFG沿射线AC方向向右平移至点E与点C重合时停止,设平移的距离为x,△ABC与△DEF重合部分的面积为y,请求出y与x的函数关系式;
(3)如图3,当平移停止时,将△DEF绕点E顺时针旋转一周,在旋转过程中△ACF与△BCF能否全等?若能,请直接写出旋转的角度α;若不能,请说明理由.

查看答案和解析>>

同步练习册答案