精英家教网 > 初中数学 > 题目详情
6.如图,已知AD∥CB,∠A=∠C,若∠ABD=32°,求∠BDC的度数.有同学用了下面的方法.但由于一时犯急没有写完整,请你帮他添写完整.
解:∵AD∥CB(  已知  )
∴∠C+∠ADC=180° (两直线平行,同旁内角互补)
又∵∠A=∠C (已知)
∴∠A+∠ADC=180° (等量代换)
∴AB∥CD (同旁内角互补,两直线平行)
∴∠BDC=∠ABD=32° (两直线平行,内错角相等).

分析 先根据平行线的性质得出∠C+∠ADC=180°,再由∠A=∠C得出∠A+∠ADC=180°,故可得出AB∥CD,据此可得出结论.

解答 解:∵AD∥CB( 已知 ),
∴∠C+∠ADC=180° (两直线平行,同旁内角互补).
又∵∠A=∠C (已知),
∴∠A+∠ADC=180° (等量代换),
∴AB∥CD (同旁内角互补,两直线平行),
∴∠BDC=∠ABD=32° (两直线平行,内错角相等).
故答案为:两直线平行,同旁内角互补;已知;等量代换;同旁内角互补,两直线平行;两直线平行,内错角相等.

点评 本题考查的是平行线的判定与性质,熟知平行线的判定定理是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.如图,在路边安装路灯,灯柱BC高15m,与灯杆AB的夹角ABC为120°.路灯采用锥形灯罩,照射范围DE长为18.9m,从D、E两处测得路灯A的仰角分别为∠ADE=80.5°,∠AED=45°.求灯杆AB的长度.(参考数据:cos80.5°≈0.2,tan80.5°≈6.0)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.爸爸为了检查小明对平行线的条件与性质这部分知识的掌握情况,给他出了一道题:如图,AB∥DE,∠B=80°,CM平分∠BCD,CN⊥CM,求∠NCE的度数.小明稍加思索,就做出来了,你知道他是怎样解的吗?请把你的推理过程写下来吧.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,在四边形ABCD中,AD∥BC,∠B﹦90°,AB﹦8cm,AD﹦24cm,BC﹦26cm,点p从点A出发,以1cm/s的速度向点D运动;点Q从点C同时出发,以3cm/s的速度向点B运动,规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t s.
(1)t为何值时,四边形PQCD为平行四边形?
(2)t为何值时,四边形PQCD为等腰梯形?(等腰梯形的两腰相等,两底角相等)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.用两种方法证明“直角三角形斜边上的中线等于斜边的一半”.
已知:如图1,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线.
求证:CD=$\frac{1}{2}$AB.
证法1:如图2,在∠ACB的内部作∠BCE=∠B,
CE与AB相交于点E.
∵∠BCE=∠B,
∴①.
∵∠BCE+∠ACE=90°,
∴∠B+∠ACE=90°.
又∵②,
∴∠ACE=∠A.
∴EA=EC.
∴EA=EB=EC,
即CE是斜边AB上的中线,且CE=$\frac{1}{2}$AB.
又∵CD是斜边AB上的中线,即CD与CE重合,
∴CD=$\frac{1}{2}$AB.
请把证法1补充完整,并用不同的方法完成证法2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,在矩形ABCD中,∠BOC=120°,AB=2,则AC=4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.化简:
(1)$\frac{1}{x-3}$-$\frac{6}{{x}^{2}-9}$
(2)$\frac{{x}^{2}-x}{{x}^{2}+2x+1}$÷$\frac{x-1}{x+1}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.【问题探究】如图1,DF∥CE,∠PCE=∠α,∠PDF=∠β,猜想∠DPC与α、β之间有何数量关系?并说明理由;
【问题迁移】
如图2,DF∥CE,点P在三角板AB边上滑动,∠PCE=∠α,∠PDF=∠β.
(1)当点P在E、F两点之间运动时,如果α=30°,β=40°,则∠DPC=70°.
(2)如果点P在E、F两点外侧运动时(点P与点A、B、E、F四点不重合),写出∠DPC与α、β之间的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.课题学习:设计概率模拟实验.
在学习概率时,老师说:“掷一枚质地均匀的硬币,大量重复实验后,正面朝上的概率约是$\frac{1}{2}$.”小海、小东、小英分别设计了下列三个模拟实验:
小海找来一个啤酒瓶盖(如图1)进行大量重复抛掷,然后计算瓶盖口朝上的次数与总次数的比值;
小东用硬纸片做了一个圆形转盘,转盘上分成8个大小一样的扇形区域,并依次标上1至8个数字(如图2),转动转盘10次,然后计算指针落在奇数区域的次数与总次数的比值;
小英在一个不透明的盒子里放了四枚除颜色外都相同的围棋子(如图3),其中有三枚是白子,一枚是黑子,从中随机同时摸出两枚棋子,并大量重复上述实验,然后计算摸出的两枚棋子颜色不同的次数与总次数的比值.

根据以上材料回答问题:
小海、小东、小英三人中,哪一位同学的实验设计比较合理,并简要说出其他两位同学实验的不足之处.

查看答案和解析>>

同步练习册答案