精英家教网 > 初中数学 > 题目详情

在平面直角坐标系xOy中(O为坐标原点),已知抛物线y=x2+bx+c过点A(4,0),B(1,﹣3).
(1)求b,c的值,并写出该抛物线的对称轴和顶点坐标;
(2)设抛物线的对称轴为直线l,点P(m,n)是抛物线上在第一象限的点,点E与点P关于直线l对称,点E与点F关于y轴对称,若四边形OAPF的面积为48,求点P的坐标;
(3)在(2)的条件下,设M是直线l上任意一点,试判断MP+MA是否存在最小值?若存在,求出这个最小值及相应的点M的坐标;若不存在,请说明理由.

(1)b=﹣4,c=0,抛物线的对称轴为x=2,顶点为(2,﹣4).
(2)点P的坐标为(6,12).
(3)存在,最小值为6

解析试题分析:(1)用待定系数法就可求出b和c,再将解析式配成顶点式,就可以了.
(2)根据已知条件可得E(4﹣m,n)、F(m﹣4,n),从而得到PF=4,再由四边形OAPF的面积为48可求出点P的纵坐标,然后代入抛物线的解析式就可求出点P的坐标.
(3)根据点E与点P关于直线l对称可得MP=ME,则有MP+MA=ME+MA,再由“两点之间线段最短”可得AE的长就是MP+MA的最小值,运用勾股定理就可解决问题.
试题解析:(1)∵抛物线y=x2+bx+c过点A(4,0),B(1,﹣3),

解得:
∴y=x2﹣4x=(x﹣2)2﹣4.
∴抛物线的对称轴为x=2,顶点为(2,﹣4).
(2)如图1,

∵点P(m,n)与点E关于直线x=2对称,
∴点E的坐标为(4﹣m,n).
∵点E与点F关于y轴对称,
∴点F的坐标为(m﹣4,n).
∴PF=m﹣(m﹣4)=4.
∴PF=OA=4.
∵PF∥OA,
∴四边形OAPF是平行四边形.
∵S?OAPF=OA•=4n=48,
∴n=12.
∴m2﹣4m=n=12.
解得:m1=6,m2=﹣2.
∵点P是抛物线上在第一象限的点,
∴m=6.
∴点P的坐标为(6,12).
(3)过点E作EH⊥x轴,垂足为H,如图2,

在(2)的条件下,有P(6,12),E(﹣2,12),
则AH=4﹣(﹣2)=6,EH=12.
∵EH⊥x轴,即∠EHA=90°,
∴EA2=EH2+AH2=122+62=180.
∴EA=6
∵点E与点P关于直线l对称,
∴MP=ME.
∴MP+MA=ME+MA.
根据“两点之间线段最短”可得:
当点E、M、A共线时,MP+MA最小,最小值等于EA的长,即6
考点:1、待定系数法;2、线段的性质;3、勾股定理;4、关于x轴、y轴对称的点的坐标..

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

已知直线y=x﹣3与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+mx+n经过点A和点C.
(1)求此抛物线的解析式;
(2)在直线CA上方的抛物线上是否存在点D,使得△ACD的面积最大?若存在,求出点D的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,己知点O(0,0),A(5,0),B(4,4).
(1)求过O、B、A三点的抛物线的解析式.
(2)在第一象限的抛物线上存在点M,使以O、A、B、M为顶点的四边形面积最大,求点M的坐标.
(3)作直线x=m交抛物线于点P,交线段OB于点Q,当△PQB为等腰三角形时,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图1,在平面直角坐标系xOy中,点M为抛物线的顶点,过点(0,4)作x轴的平行线,交抛物线于点P、Q(点P在Q的左侧),PQ=4.
(1)求抛物线的函数关系式,并写出点P的坐标;
(2)小丽发现:将抛物线绕着点P旋转180°,所得新抛物线的顶点恰为坐标原点O,你认为正确吗?请说明理由;
(3)如图2,已知点A(1,0),以PA为边作矩形PABC(点P、A、B、C按顺时针的方向排列),
①写出C点的坐标:C(              )(坐标用含有t的代数式表示);
②若点C在题(2)中旋转后的新抛物线上,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知抛物线y=3ax2+2bx+c
(1)若a=b=1,c=-1求该抛物线与x轴的交点坐标;
(2)若a=,c=2+b且抛物线在区间上的最小值是-3,求b的值;
(3)若a+b+c=1,是否存在实数x,使得相应的y的值为1,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图1、2,已知四边形ABCD为正方形,在射线AC上有一动点P,作PE⊥AD(或延长线)于E,作PF⊥DC(或延长线)于F,作射线BP交EF于G.
(1)在图1中,设正方形ABCD的边长为2,四边形ABFE的面积为y,AP=x,求y关于x的函数表达式;
(2)结论:GB⊥EF对图1,图2都是成立的,请任选一图形给出证明;
(3)请根据图2证明:△FGC∽△PFB.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.
(1)求抛物线的解析式;
(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标;
(3)将△AOB沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与△ABC重叠部分的面积记为S,用m的代数式表示S.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

抛物线(b,c均为常数)与x轴交于两点,与y轴交于点
(1)求该抛物线对应的函数表达式;
(2)若P是抛物线上一点,且点P到抛物线的对称轴的距离为3,请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

抛物线的最小值是     

查看答案和解析>>

同步练习册答案