Èçͼ£¬¶þ´Îº¯Êýy=ax2+bx+c£¨a¡Ù0£©µÄͼÏóÓëxÖá½»ÓÚA£¨-1£¬0£©£¬B£¨3£¬0£©Á½µã£¬ÓëyÖá½»ÓÚµãC£¬ÇÒ¶þ´Îº¯ÊýµÄ×îСֵΪ-4£¬
£¨1£©Çó¶þ´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©ÈôM£¨m£¬n£©£¨0£¼m£¼3£©Îª´ËÅ×ÎïÏßÉϵÄÒ»¸ö¶¯µã£¬Á¬½ÓMC¡¢MB£¬ÊÔÇóµ±mΪºÎֵʱ£¬¡÷MBCµÄÃæ»ý×î´ó£¿²¢Çó³öÕâ¸ö×î´óÖµ£»
£¨3£©ÒÑÖªPΪÅ×ÎïÏßÉϵÄÈÎÒâÒ»µã£¬¹ýµãP×÷PQ¡ÎxÖá½»Å×ÎïÏßÓÚÁíÒ»µãQ£¨µãPÔÚµãQµÄ×ó²à£©£¬·Ö±ð×÷PE¡ÍxÖᣬQF¡ÍxÖᣬ´¹×ã·Ö±ðΪE¡¢F£¬ÈôËıßÐÎPQFEΪÕý·½ÐΣ¬ÇóµãPµÄ×ø±ê£®
·ÖÎö£º£¨1£©¸ù¾ÝµãA¡¢BµÄ×ø±êÇó³ö¶Ô³ÆÖá½âÎöʽ£¬´Ó¶øµÃµ½¶¥µã×ø±ê£¬È»ºóÉ趥µãʽ½âÎöʽ£¬°ÑµãAµÄ×ø±ê´úÈë¼ÆËã¼´¿ÉµÃ½â£»
£¨2£©¸ù¾ÝµãB¡¢CµÄ×ø±êÇó³öOB¡¢OCµÄ³¤¶È£¬ÀûÓù´¹É¶¨ÀíÇó³öBC£¬ÔÙÇó³öÖ±ÏßBCµÄ½âÎöʽ£¬¸ù¾ÝÈý½ÇÐεÄÃæ»ý£¬µ±Æ½ÐÐÓÚBCµÄÖ±ÏßÓëÅ×ÎïÏßÖ»ÓÐÒ»¸ö½»µãʱ¡÷MBCµÄÃæ»ý×î´ó£¬ÔÙ¸ù¾ÝƽÐÐÖ±ÏߵĽâÎöʽµÄkÖµÏàµÈÉè³öƽÐÐÏߵĽâÎöʽ£¬È»ºóÓëÅ×ÎïÏßÁªÁ¢ÏûµôyµÃµ½¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì£¬È»ºóÀûÓøùµÄÅбðʽ¡÷=0Çó³öÖ±ÏߵĽâÎöʽ£¬ÔÙ¸ù¾ÝµÈÑüÖ±½ÇÈý½ÇÐεÄÐÔÖÊÇó³öµãMµ½BCµÄ¾àÀ룬ȻºóÇó½â¼´¿É£»
£¨3£©¸ù¾ÝÅ×ÎïÏߵĽâÎöʽÉèµãPµÄ×ø±êΪ£¨x£¬x2-2x-3£©£¬¸ù¾ÝÅ×ÎïÏߵĶԳÆÐÔÒÔ¼°µãPÔÚµãQµÄ×ó²à£¬±íʾ³öEF=2£¨1-x£©£¬È»ºó¸ù¾ÝÕý·½ÐεÄËÄÌõ±ß¶¼ÏàµÈÁÐʽ£¬ÔÙ·Ö¢Ùx£¼-1ʱµãPµÄ×Ý×ø±êÊÇÕýÊý£¬¢Ú-1£¼x£¼1ʱ£¬µãPµÄ×Ý×ø±êÊǸºÊýÁ½ÖÖÇé¿öÈ¥µô¾ø¶ÔÖµºÅ£¬½â·½³ÌÇó½â¼´¿É£®
½â´ð£º½â£º£¨1£©¡ß¶þ´Îº¯Êý¾­¹ýµãA£¨-1£¬0£©£¬B£¨3£¬0£©£¬
¡àÅ×ÎïÏߵĶԳÆÖáΪֱÏßx=
-1+3
2
=1£¬
¡ß¶þ´Îº¯ÊýµÄ×îСֵΪ-4£¬
¡à¶¥µã×ø±êΪ£¨1£¬-4£©£¬
É趥µãʽ½âÎöʽΪy=a£¨x-1£©2-4£¬
Ôòa£¨-1-1£©2-4=0£¬
½âµÃa=1£¬
ËùÒÔ£¬¶þ´Îº¯Êý½âÎöʽΪy=£¨x-1£©2-4=x2-2x-3£¬¼´y=x2-2x-3£»

£¨2£©Áîx=0£¬Ôòy=-3£¬
¡àµãC×ø±êΪ£¨0£¬-3£©£¬
¡àOB=3£¬OC=3£¬
¡à¡÷OBCÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬
¸ù¾Ý¹´¹É¶¨Àí£¬BC=
32+32
=3
2
£¬
²»ÄÑÇó³ö£¬Ö±ÏßBCµÄ½âÎöʽΪy=x-3£¬
¸ù¾ÝÈý½ÇÐεÄÃæ»ý£¬µ±Æ½ÐÐÓÚÖ±ÏßBCÖ±ÏßÓëÅ×ÎïÏßÖ»ÓÐÒ»¸ö½»µãʱ£¬µãMµ½BCµÄ¾àÀë×î´ó£¬´Ëʱ£¬¡÷MBCµÄÃæ»ý×î´ó£¬
Éè¹ýµãMµÄÖ±ÏßΪy=x+e£¬
ÁªÁ¢
y=x2-2x-3
y=x+e
£¬
ÕûÀíµÃ£¬x2-3x-3-e=0£¬
¡÷=b2-4ac=9+4£¨3+e£©=0£¬
½âµÃe=-
21
4
£¬
´Ëʱ£¬x1+x2=2m=-
-3
1
=3£¬
½âµÃm=
3
2
£¬
n=
3
2
-
21
4
=-
15
4
£¬
ËùÒÔ£¬µãMµÄ×ø±êΪ£¨
3
2
£¬-
15
4
£©£¬
µãMµ½Ö±ÏßBCµÄ¾àÀëΪ|-3-£¨-
21
4
£©|¡Á
2
2
=
9
2
8
£¬
S¡÷MBC=
1
2
¡Á3
2
¡Á
9
2
8
=
27
8
£»

£¨3£©ÉèµãPµÄ×ø±êΪ£¨x£¬x2-2x-3£©£¬
¡ßµãPÔÚµãQµÄ×ó²à£¬
¡àEF=2£¨1-x£©£¬
¡ßËıßÐÎPQFEΪÕý·½ÐΣ¬
¡à|x2-2x-3|=2£¨1-x£©£¬
¸ù¾Ýº¯ÊýͼÏ󣬢Ùx£¼-1ʱ£¬x2-2x-3=2£¨1-x£©£¬
ÕûÀíµÃ£¬x2=5£¬
½âµÃx1=-
5
£¬x2=
5
£¨ÉáÈ¥£©£¬
x2-2x-3=£¨-
5
£©2-2¡Á£¨-
5
£©-3=2
5
+2£¬
ËùÒÔ£¬µãPµÄ×ø±êΪ£¨-
5
£¬2
5
+2£©£»
¢Ú-1£¼x£¼1ʱ£¬-£¨x2-2x-3£©=2£¨1-x£©£¬
ÕûÀíµÃ£¬x2-4x-1=0£¬
½âµÃx1=2-
5
£¬x2=2+
5
£¨ÉáÈ¥£©£¬
x2-2x-3=£¨2-
5
£©2-2¡Á£¨2-
5
£©-3=2-2
5
£¬
ËùÒÔµãPµÄ×ø±êΪ£¨2-
5
£¬2-2
5
£©£»
×ÛÉÏËùÊö£¬´æÔÚµãP£¨-
5
£¬2
5
+2£©»ò£¨2-
5
£¬2-2
5
£©£¬Ê¹ËıßÐÎPQFEΪÕý·½ÐΣ®
µãÆÀ£º±¾Ì⿼²éÁ˶þ´Îº¯Êý×ÛºÏÌâÐÍ£¬Ö÷Òª¿¼²éÁË´ý¶¨ÏµÊý·¨Çó¶þ´Îº¯Êý½âÎöʽ£¬ÁªÁ¢Á½º¯Êý½âÎöʽÇó½»µã×ø±ê£¬µÈÑüÖ±½ÇÈý½ÇÐεÄÐÔÖÊ£¬Õý·½ÐεÄËÄÌõ±ß¶¼ÏàµÈµÄÐÔÖÊ£¬¶þ´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷£¬×ÛºÏÐÔ½ÏÇ¿£¬ÄѶȽϴ󣬣¨1£©ÏÈÇó³ö¶¥µã×ø±ê£¬ÔÙÀûÓö¥µãʽ½âÎöʽÇó½â¸ü¼Ó¼ò±ã£¬£¨2£©×¢ÒâÁ½Æ½ÐÐÖ±Ïß½âÎöʽµÄkÖµÏàµÈµÄÀûÓ㬣¨3£©Òª·ÖµãPµÄ×Ý×ø±êÊÇÕýÊýÓ븺ÊýÁ½ÖÖÇé¿öÌÖÂÛÇó½â£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬¶þ´Îº¯ÊýµÄͼÏó¾­¹ýµãD£¨0£¬
7
9
3
£©£¬ÇÒ¶¥µãCµÄºá×ø±êΪ4£¬¸ÃͼÏóÔÚxÖáÉϽصõÄÏ߶ÎABµÄ³¤Îª6£®
£¨1£©Çó¶þ´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©ÔÚ¸ÃÅ×ÎïÏߵĶԳÆÖáÉÏÕÒÒ»µãP£¬Ê¹PA+PD×îС£¬Çó³öµãPµÄ×ø±ê£»
£¨3£©ÔÚÅ×ÎïÏßÉÏÊÇ·ñ´æÔÚµãQ£¬Ê¹¡÷QABÓë¡÷ABCÏàËÆ£¿Èç¹û´æÔÚ£¬Çó³öµãQµÄ×ø±ê£»Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬¶þ´Îº¯ÊýͼÏóµÄ¶¥µãΪ×ø±êÔ­µãO£¬ÇÒ¾­¹ýµãA£¨3£¬3£©£¬Ò»´Îº¯ÊýµÄͼÏó¾­¹ýµãAºÍµãB£¨6£¬0£©£®
£¨1£©Çó¶þ´Îº¯ÊýÓëÒ»´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©Èç¹ûÒ»´Îº¯ÊýͼÏóÓëyÏཻÓÚµãC£¬µãDÔÚÏ߶ÎACÉÏ£¬ÓëyÖáƽÐеÄÖ±ÏßDEÓë¶þ´Îº¯ÊýͼÏóÏཻÓÚµãE£¬¡ÏCDO=¡ÏOED£¬ÇóµãDµÄ×ø±ê£®
¾«Ó¢¼Ò½ÌÍø

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬¶þ´Îº¯Êýy=ax2+bx+cµÄͼÏóÓëxÖá½»ÓÚB¡¢CÁ½µã£¬ÓëyÖá½»ÓÚµãA£¨0£¬-3£©£¬¡ÏABC=45¡ã£¬¡ÏACB=60¡ã£¬ÇóÕâ¸ö¶þ´Îº¯Êý½âÎöʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ij¹«Ë¾ÍƳöÁËÒ»ÖÖ¸ßЧ»·±£ÐÍÏ´µÓÓÃÆ·£¬Äê³õÉÏÊк󣬹«Ë¾¾­ÀúÁË´Ó¿÷Ëðµ½Ó¯ÀûµÄ¹ý³Ì£¬ÈçͼµÄ¶þ´Îº¯ÊýͼÏ󣨲¿·Ö£©¿Ì»­Á˸ù«Ë¾Äê³õÒÔÀ´ÀÛ»ýÀûÈós£¨ÍòÔª£©Óëʱ¼ät£¨Ô£©Ö®¼äµÄ¹Øϵ£¨¼´Ç°t¸öÔµÄÀûÈó×ܺÍsÓëtÖ®¼äµÄ¹Øϵ£©£®¸ù¾ÝͼÏóÌṩµÄÐÅÏ¢£¬½â´ðÏÂÁÐÎÊÌ⣺
£¨1£©ÇóÀÛ»ýÀûÈós£¨ÍòÔª£©Óëʱ¼ät£¨Ô£©Ö®¼äµÄº¯Êý¹Øϵʽ£»
£¨2£©Çó½ØÖ¹µ½¼¸ÔÂÄ©¹«Ë¾ÀÛ»ýÀûÈó¿É´ï30ÍòÔª£»
£¨3£©´ÓµÚ¼¸¸öÔÂÆð¹«Ë¾¿ªÊ¼Ó¯Àû£¿¸ÃÔ¹«Ë¾Ëù»ñÀûÈóÊǶàÉÙÍòÔª£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬¶þ´Îº¯Êýy=ax2+bx+cµÄͼÏóÓëxÖáÏཻÓÚÁ½¸öµã£¬¸ù¾ÝͼÏó»Ø´ð£º£¨1£©b
£¾
£¾
0£¨Ìî¡°£¾¡±¡¢¡°£¼¡±¡¢¡°=¡±£©£»
£¨2£©µ±xÂú×ã
x£¼-4»òx£¾2
x£¼-4»òx£¾2
ʱ£¬ax2+bx+c£¾0£»
£¨3£©µ±xÂú×ã
x£¼-1
x£¼-1
ʱ£¬ax2+bx+cµÄÖµËæxÔö´ó¶ø¼õС£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸