精英家教网 > 初中数学 > 题目详情
已知二次函数(a≠0)的图象如图所示,则下列结论中正确的是
A.ac>0 
B.当x>1时,y随x的增大而减小
C.b﹣2a=0
D.x=3是关于x的方程(a≠0)的一个根
D。
由二次函数y=ax2+bx+c的图象可得:抛物线开口向上,即a>0,
抛物线与y轴的交点在y轴负半轴,即c<0,
∴ac<0,选项A错误。
由函数图象可得:当x<1时,y随x的增大而减小;当x>1时,y随x的增大而增大,选项B错误。
∵对称轴为直线x=1,∴,即2a+b=0,选项C错误。。。
由图象可得抛物线与x轴的一个交点为(﹣1,0),又对称轴为直线x=1,
∴抛物线与x轴的另一个交点为(3,0),则x=3是方程的一个根,选项D正确。。
故选D。 
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线(a≠0)经过点A(﹣3,0)、B(1,0)、C(﹣2,1),交y轴于点M.

(1)求抛物线的表达式;
(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM于点F,求线段DF长度的最大值,并求此时点D的坐标;
(3)抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A、N为顶点的三角形与△MAO相似?若存在,求点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标平面xOy中,抛物线C1的顶点为A(-1,4),且过点B(-3,0)

(1)写出抛物线C1与x轴的另一个交点M的坐标;
(2)将抛物线C1向右平移2个单位得抛物线C2,求抛物线C2的解析式;
(3)写出阴影部分的面积S.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1所示,已知直线与x轴、y轴分别交于A、C两点,抛物线经过A、C两点,点B是抛物线与x轴的另一个交点,当时,y取最大值.

(1)求抛物线和直线的解析式;
(2)设点P是直线AC上一点,且,求点P的坐标;
(3)若直线与(1)中所求的抛物线交于M、N两点,问:
①是否存在a的值,使得∠MON=900?若存在,求出a的值;若不存在,请说明理由;
②猜想当∠MON>900时,a的取值范围(不写过程,直接写结论).
(参考公式:在平面直角坐标系中,若M(x1,y1),N(x2,y2),则M,N两点间的距离为

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,二次函数的图象与 轴交于A(,0),B(2,0),且与轴交于点C.


(1)求该抛物线的解析式,并判断△ABC的形状;
(2)点P是x轴下方的抛物线上一动点, 连接PO,PC,
并把△POC沿CO翻折,得到四边形,求出使四边形为菱形的点P的坐标;
(3) 在此抛物线上是否存在点Q,使得以A,C,B,Q四点为顶点的四边形是直角梯形?若存在, 求出Q点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数 (a、m为常数,且a¹0)。
(1)求证:不论a与m为何值,该函数的图像与x轴总有两个公共点;
(2)设该函数的图像的顶点为C,与x轴交于A、B两点,与y轴交于点D。
①当△ABC的面积等于1时,求a的值:
②当△ABC的面积与△ABD的面积相等时,求m的值。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数中,其函数与自变量之间的部分对应值如下表所示:
x
……
0
1
2
3
4
5
……
y
……
4
1
0
1
4
9
……
(1)当x=-1时,y的值为      
(2)点A()、B()在该函数的图象上,则当时,的大小关系是      
(3)若将此图象沿x轴向右平移3个单位,请写出平移后图象所对应的函数关系式:      
(4)设点P1(m,y1)、P2(m+1,y2)、P3(m+2,y3)都在二次函数的图象上,问:当m<-3时,y1、y2、y3的值一定能作为同一个三角形三边的长吗?为什么?=】

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=x2+bx+c与坐标轴交于A、B、C三点, A点的坐标为(-1,0),过点C的直线y=x-3与x轴交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB于点H.若PB=5t,且0<t<1.

(1)填空:点C的坐标是     ,b=   ,c=    
(2)求线段QH的长(用含t的式子表示);
(3)依点P的变化,是否存在t的值,使以P、H、Q为顶点的三角形与△COQ相似?若存在,求出所有t的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

有下列4个命题:
①方程的根是
②在△ABC中,∠ACB=90°,CD⊥AB于D.若AD=4,BD=,则CD=3.
③点P(x,y)的坐标x,y满足x2+y2+2x﹣2y+2=0,若点P也在的图象上,则k=﹣1.
④若实数b、c满足1+b+c>0,1﹣b+c<0,则关于x的方程x2+bx+c=0一定有两个不相等的实数根,且较大的实数根x0满足﹣1<x0<1.
上述4个命题中,真命题的序号是   

查看答案和解析>>

同步练习册答案