【题目】函数y=mx+n与,其中m≠0,n≠0,那么它们在同一坐标系中的图象可能是( )
A. B. C. D.
【答案】B.
【解析】
试题根据图象中一次函数图象的位置确定m、n的值;然后根据m、n的值来确定反比例函数所在的象限,对各选项作出判断:
A、∵函数y=mx+n经过第一、三、四象限,∴m>0,n<0.
∴<0.∴函数y=的图象经过第二、四象限.与图示图象不符.故本选项错误.
B、∵函数y=mx+n经过第一、三、四象限,∴m>0,n<0.
∴<0.∴函数的y=图象经过第二、四象限.与图示图象一致.故本选项正确.
C、∵函数y=mx+n经过第一、二、四象限,∴m<0,n>0.
∴<0.∴函数的y=图象经过第二、四象限.与图示图象不符.故本选项错误.
D、∵函数y=mx+n经过第二、三、四象限,∴m<0,n<0.
∴>0. ∴函数的y=图象经过第一、三象限.与图示图象不符.故本选项错误.
故选B.
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,BC=5,AC=12,M为斜边AB上一动点,过M作MD⊥AC,过M作ME⊥CB于点E,则线段DE的最小值为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,边长为10,∠A=60°,顺次连接菱形ABCD各边中点,可得四边形A1B1C1D1;顺次连结四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;顺次连结四边形A2B2C2D2各边中点,可得四边形A3B3C3D3;按此规律继续下去….则四边形A2B2C2D2的周长是 ;四边形A2015B2015C2015D2015的周长 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有4张写着以下数字的卡片,请按要求抽出卡片,完成下列各题:
(1)从中取出2张卡片,使这2张卡片上数字之积最大,最大值是________.
(2)从中取出2张卡片,使这2张卡片上数字之差最小,最小值是________.
(3)从中取出4张卡片,将这4个数字进行加、减、乘、除或乘方等混合运算,使结果为24,请写出一种符合要求的运算式子________.(注:4个数字都必须用到且只能用一次.)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知函数y1=x(x≥0),y2= (x>0)的图象如图所示,则以下结论:
①两函数图象的交点A的坐标为(2,2);②当x>2时,y1>y2;
③BC=2;④两函数图象构成的图形是轴对称图形;
⑤当x逐渐增大时,y1随着x的增大而增大,y2随着x的增大而减小.
其中正确结论的序号是____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点A在数轴上对应的数为a,点B对应的数为b,且|a+4|+(b﹣1)2=0,A、B之间的距离记作|AB|,定义:|AB|=|a﹣b|.
(1)求线段AB的长|AB|;
(2)设点P在数轴上对应的数为x,当|PA|﹣|PB|=2时,求x的值;
(3)若点P在A的左侧,M、N分别是PA、PB的中点,当P在A的左侧移动时,下列两个结论:
①|PM|+|PN|的值不变;②|PN|﹣|PM|的值不变,其中只有一个结论正确,请判断出正确结论,并求其值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形OABC的对角线OB,AC相交于点D,且BE∥AC,AE∥OB,
(1)求证:四边形AEBD是菱形;
(2)如果OA=3,OC=2,求出经过点E的反比例函数解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)探究新知:如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.
(2)结论应用:① 如图2,点M,N在反比例函数(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F.试证明:MN∥EF.
② 若①中的其他条件不变,只改变点M,N的位置如图3所示,请判断 MN与EF是否平行?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com