【题目】如果等腰三角形的一边长为8,另一边长为10,那么连结这个三角形各边的中点所成的三角形的周长为 _______.
【答案】13或14
【解析】
作图分析,根据中位线定理得出△DEF的周长等于△ABC的周长的一半,再分两种情况讨论,从而求得其周长.
解:如图,△ABC中,AB=AC=8cm,BC=10cm,D、E、F分别是边AB、BC、AC的中点.
求△DEF的周长.
①∵AB=AC=8,BC=10,D、E、F分别是边AB、BC、AC的中点,
∴DE=BC,DF=AC,EF=AB,
∴△DEF的周长=DE+DF+EF=(8+8+10)=13,
②∵AB=AC=10,BC=8,D、E、F分别是边AB、BC、AC的中点,
∴DE=BC,DF=AC,EF=AB,
∴△DEF的周长=DE+DF+EF=(8+10+10)=14,
故答案为:13或14.
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),与x轴交于另一点B,抛物线的顶点为D.
(1)求此二次函数解析式;
(2)连接DC、BC、DB,求证:△BCD是直角三角形;
(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(12分)如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.
(1)求证:DE⊥AG;
(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.
①在旋转过程中,当∠OAG′是直角时,求α的度数;
②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线经过,两点,与x轴的另一个交点为C,顶点为D,连结CD.
(1)求该抛物线的表达式;
(2)点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.
①当点P在直线BC的下方运动时,求的面积的最大值;
②该抛物线上是否存在点P,使得若存在,求出所有点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(题文)如图,在等腰直角三角形MNC中,CN=MN=,将△MNC绕点C顺时针旋转60°,得到△ABC,连接AM,BM,BM交AC于点O.
(1)∠NCO的度数为________;
(2)求证:△CAM为等边三角形;
(3)连接AN,求线段AN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】
情境观察:将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示.
观察图2可知:与BC相等的线段是 ▲ ,∠CAC′= ▲ °.
问题探究:如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q. 试探究EP与FQ之间的数量关系,并证明你的结论.
拓展延伸:如图4,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H. 若AB=k AE,AC=k AF,试探究HE与HF之间的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,线段AC=n+1(其中n为正整数),点B在线段AC上,在线段AC同侧作菱形ABMN与菱形BCEF,点F在BM边上,AB=n,∠ABM=60°,连接AM、ME、EA得到△AME.当AB=1时,△AME的面积记为S1;当AB=2时,△AME的面积记为S2;当AB=3时,△AME的面积记为S3;…;当AB=n时,△AME的面积记为Sn,当n≥2时,Sn﹣Sn﹣1=__.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平面直角坐标系xOy中,对于点A和线段BC,给出如下定义:若△ABC是等腰直角三角形,则称点A为BC的“等直点”;特别的,若△ABC是以BC为斜边的等腰直角三角形,则称点A为BC的“完美等直点”.
(1)若B(﹣2,0),C(2,0),则在D(0,2),E(4,4),F(﹣2,﹣4),G(0,)中,线段BC的“等直点”是 ;
(2)已知B(0,﹣6),C(8,0).
①若双曲线y=上存在点A,使得点A为BC的“完美等直点”,求k的值;
②在直线y=x+6上是否存在点P,使得点P为BC的“等直点”?若存在,求出点P的坐标;若不存在,请说明理由;
(3)若B(0,2),C(2,0),⊙T的半径为3,圆心为T(t,0).当在⊙T内部,恰有三个点是线段BC的“等直点”时,直接写出t的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com