精英家教网 > 初中数学 > 题目详情
17.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点.

(1)请画出平移后的△DEF,并求△DEF的面积=7.
(2)若连接AD、CF,则这两条线段之间的关系是平行且相等;
(3)请在AB上找一点P,使得线段CP平分△ABC的面积,在图上作出线段CP.

分析 (1)根据图形平移的性质画出平移后的△DEF,再求出其面积即可;
(2)根据图形平移的性质可直接得出结论;
(3)找出线段AB的中点P,连接PC即可.

解答 解:(1)如图所示,S△DEF=4×4-$\frac{1}{2}$×4×1-$\frac{1}{2}$×2×4-$\frac{1}{2}$×2×3
=16-2-4-3
=7.
故答案为:7;

(2)∵A、C的对应点分别是D、F,
∴连接AD、CF,则这两条线段之间的关系是平行且相等.
故答案为:平行且相等;

(3)如图,线段PC即为所求.

点评 本题考查的是作图-平移变换,熟知图形平移不变性的性质是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.已知ax=5,ax+y=30,求ax+ay的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.如图所示是一个几何体的三视图,这个几何体的名称是(  )
A.圆柱B.三棱锥C.D.圆锥

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图1是一个新款水杯,水杯不盛水时按如图2所示的位置放置,这样可以快速晾干杯底,干净透气;将图2的主体部分的抽象成图3,此时杯口与水平直线的夹角为35°,四边形ABCD可以看作矩形,测得AB=10cm,BC=8cm,过点A作AF⊥CE,交CE于点F.
(1)求∠BAF的度数;
(2)求点A到水平直线CE的距离AF的长(精确到0.1cm)
(参考数据sin35°≈0.5736,cos35°≈0.8192,tan35°≈0.7002)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.计算
(1)(-$\frac{1}{4}$)-1-1-2×(-22)-($\frac{1}{2}$)-2   
(2)(-a23-(-a32+2a5•(-a)
(3)($\frac{1}{2}$x-y)2-$\frac{1}{4}$(x+2y)(x-2y)     
(4)(3-2x+y)(3+2x-y)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,点A在双曲线y=$\frac{m}{x}$上,点B在双曲线y=$\frac{n}{x}$(n>m>0)上,C、D在x轴上,若四边形ABCD为平行四边形且面积为5,则m-n等于-5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.计算:x(x-2)-(x+2)(x-2),其中x=$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,在正方形ABCD外侧,作等边△ADE,AC、BE相交于点F,求∠BFC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.把一张矩形纸片ABCD按如图方式折叠,使顶点B和D重合,折痕为EF.
(1)连接BE,求证:四边形BFDE是菱形,并说明理由;
(2)若AB=8cm,BC=16cm,求线段DF及折痕EF的长.

查看答案和解析>>

同步练习册答案