精英家教网 > 初中数学 > 题目详情
(2012•深圳二模)如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=
5
.下列结论:①△APD≌△AEB;②点B到直线AE的距离为
2
;③EB⊥ED;④S△APD+S△APB=1+
6
;⑤S正方形ABCD=4+
6
.其中正确结论的序号是
①③⑤
①③⑤
分析:①首先利用已知条件根据边角边可以证明△APD≌△AEB;
②由①可得∠BEP=90°,故BE不垂直于AE过点B作BM⊥AE延长线于M,由①得∠AEB=135°所以∠EMB=45°,所以△EMB是等腰Rt△,故B到直线AE距离为BF=
3
,故②是错误的;
③利用全等三角形的性质和对顶角相等即可判定③说法正确;
④由△APD≌△AEB,可知S△APD+S△APB=S△AEB+S△APB,然后利用已知条件计算即可判定;
⑤连接BD,根据三角形的面积公式得到S△BPD=
1
2
PD×BE=
3
2
,所以S△ABD=S△APD+S△APB+S△BPD=2+
6
2
,由此即可判定.
解答:解:由边角边定理易知△APD≌△AEB,故①正确;
由△APD≌△AEB得,∠AEP=∠APE=45°,从而∠APD=∠AEB=135°,
所以∠BEP=90°,
过B作BF⊥AE,交AE的延长线于F,则BF的长是点B到直线AE的距离,
在△AEP中,由勾股定理得PE=
2

在△BEP中,PB=
5
,PE=
2
,由勾股定理得:BE=
3

∵∠PAE=∠PEB=∠EFB=90°,AE=AP,
∴∠AEP=45°,
∴∠BEF=180°-45°-90°=45°,
∴∠EBF=45°,
∴EF=BF,
在△EFB中,由勾股定理得:EF=BF=
6
2

故②是错误的;
因为△APD≌△AEB,所以∠ADP=∠ABE,而对顶角相等,所以③是正确的;
由△APD≌△AEB,
∴PD=BE=
3

可知S△APD+S△APB=S△AEB+S△APB=S△AEP+S△BEP=
1
2
+
6
2
,因此④是错误的;
连接BD,则S△BPD=
1
2
PD×BE=
3
2

所以S△ABD=S△APD+S△APB+S△BPD=2+
6
2

所以S正方形ABCD=2S△ABD=4+
6

综上可知,正确的有①③⑤.
点评:此题分别考查了正方形的性质、全等三角形的性质与判定、三角形的面积及勾股定理,综合性比较强,解题时要求熟练掌握相关的基础知识才能很好解决问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•深圳二模)
16
的算术平方根的倒数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•深圳二模)将3980000保留2个有效数字后,可用科学记数法表示为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•深圳二模)如图,已知等腰Rt△ABC中,∠B=90°,AB=BC=8cm,点P是线段AB上的点,点Q是线段BC延长线上的点,且AP=CQ,PQ与直线AC相交于点D.作PE⊥AC于点E,则线段DE的长度(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•深圳二模)样本数据3,6,a,4,2,5的平均数是5,则这组数据的中位数是
4.5
4.5

查看答案和解析>>

同步练习册答案