精英家教网 > 初中数学 > 题目详情

【题目】如图,O是直线AB上的一点,OC为任一射线,OD平分∠BOC,OE平分∠AOC.

(1)指出图中∠AOD的补角和∠BOE的补角;

(2)若∠BOC=68°,求∠COD和∠EOC的度数;

(3)COD与∠EOC具有怎样的数量关系?

【答案】(1)AOD的补角为∠BOD,COD,BOE的补角为∠EOC,AOE;(2)COD=34°,EOC=56°;(3)COD与∠EOC互余.

【解析】

1)根据互为补角的和等于180°找出即可

2)根据角平分线的定义求出∠COD的度数即可先求出∠AOC的度数再根据角平分线的定义解答

3)根据角平分线的定义表示出∠COD与∠EOC然后整理即可得解.

1AOD的补角为∠BOD,∠CODBOE的补角为∠AOECOE

2OD平分∠BOCBOC=68°,∴∠COD=BOC=×68°=34°,

∵∠BOC=68°,∴∠AOC=180°﹣BOC=180°﹣68°=112°,

OE平分∠AOC∴∠EOC=AOC=×112°=56°;

3OD平分∠BOCOE平分∠AOC∴∠COD=BOCEOC=AOC∴∠COD+∠EOC=BOC+∠AOC)=×180°=90°,∴∠COD与∠EOC互余.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABDE,1=ACB,AC平分∠BAD,

(1)试说明: ADBC.

(2)若∠B=80°,求∠ADE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y= x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0),与y轴交于点C.若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动.

(1)求该二次函数的解析式及点C的坐标;
(2)当点P运动到B点时,点Q停止运动,这时,在x轴上是否存在点E,使得以A,E,Q为顶点的三角形为等腰三角形?若存在,请求出E点坐标;若不存在,请说明理由.
(3)当P,Q运动到t秒时,△APQ沿PQ翻折,点A恰好落在抛物线上D点处,请判定此时四边形APDQ的形状,并求出D点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解决小区停车难的问题,某小区准备新建50个停车位,已知新建1个地上停车位和1个地下停车位需0.5万元,新建3个地上停车位和2个地下停车位需1.1万元.

(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?

(2)根据实际情况,该小区新建地上停车位不多于33个,且预计投资金额不超过11万元,共有几种建造方式?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】画图并计算:已知线段AB=2 cm,延长线段AB至点C,使得2BC=AB,再反向延长AC至点D,使得AD=AC.

(1)准确地画出图形,并标出相应的字母;

(2)线段DC的中点是哪个?线段AB的长是线段DC长的几分之几?

(3)求出线段BD的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】农夫将苹果树种在正方形的果园内,为了保护苹果树不受风吹,他在苹果树的周围种上针叶树.在下图里,你可以看到农夫所种植苹果树的列数(n)和苹果树数量及针叶树数量的规律:当n为某一个数值时,苹果树数量会等于针叶树数量,则n(  )

A. 6 B. 8 C. 12 D. 16

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,半径为1cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为(
A.πcm2
B. πcm2
C. cm2
D. cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△OAC中,以O为圆心,OA为半径作⊙O,作OB⊥OC交⊙O于B,垂足为O,连接AB交OC于点D,∠CAD=∠CDA.
(1)判断AC与⊙O的位置关系,并证明你的结论;
(2)若OA=5,OD=1,求线段AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】快、慢两车分别从相距180千米的甲、乙两地同时出发,沿同一路线匀速行驶,相向而行,快车到达乙地停留一段时间后,按原路原速返回甲地.慢车到达甲地比快车到达甲地早 小时,慢车速度是快车速度的一半,快、慢两车到达甲地后停止行驶,两车距各自出发地的路程y(千米)与所用时间x(小时)的函数图象如图所示,请结合图象信息解答下列问题:
(1)请直接写出快、慢两车的速度;
(2)求快车返回过程中y(千米)与x(小时)的函数关系式;
(3)两车出发后经过多长时间相距90千米的路程?直接写出答案.

查看答案和解析>>

同步练习册答案