精英家教网 > 初中数学 > 题目详情
20.如图,在平面直角坐标系中,直线l:y=$\frac{\sqrt{3}}{3}$x-$\frac{\sqrt{3}}{3}$与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是$\frac{{2}^{2017}-1}{2}$.

分析 先根据直线l:y=$\frac{\sqrt{3}}{3}$x-$\frac{\sqrt{3}}{3}$与x轴交于点B1,可得B1(1,0),OB1=1,∠OB1D=30°,再,过A1作A1A⊥OB1于A,过A2作A2B⊥A1B2于B,过A3作A3C⊥A2B3于C,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A1的横坐标为$\frac{{2}^{1}-1}{2}$,A2的横坐标为$\frac{{2}^{2}-1}{2}$,A3的横坐标为$\frac{{2}^{3}-1}{2}$,进而得到An的横坐标为$\frac{{2}^{n}-1}{2}$,据此可得点A2017的横坐标.

解答 解:由直线l:y=$\frac{\sqrt{3}}{3}$x-$\frac{\sqrt{3}}{3}$与x轴交于点B1,可得B1(1,0),D(-$\frac{\sqrt{3}}{3}$,0),
∴OB1=1,∠OB1D=30°,
如图所示,过A1作A1A⊥OB1于A,则OA=$\frac{1}{2}$OB1=$\frac{1}{2}$,
即A1的横坐标为$\frac{1}{2}$=$\frac{{2}^{1}-1}{2}$,
由题可得∠A1B2B1=∠OB1D=30°,∠B2A1B1=∠A1B1O=60°,
∴∠A1B1B2=90°,
∴A1B2=2A1B1=2,
过A2作A2B⊥A1B2于B,则A1B=$\frac{1}{2}$A1B2=1,
即A2的横坐标为$\frac{1}{2}$+1=$\frac{3}{2}$=$\frac{{2}^{2}-1}{2}$,
过A3作A3C⊥A2B3于C,
同理可得,A2B3=2A2B2=4,A2C=$\frac{1}{2}$A2B3=2,
即A3的横坐标为$\frac{1}{2}$+1+2=$\frac{7}{2}$=$\frac{{2}^{3}-1}{2}$,
同理可得,A4的横坐标为$\frac{1}{2}$+1+2+4=$\frac{15}{2}$=$\frac{{2}^{4}-1}{2}$,
由此可得,An的横坐标为$\frac{{2}^{n}-1}{2}$,
∴点A2017的横坐标是$\frac{{2}^{2017}-1}{2}$,
故答案为:$\frac{{2}^{2017}-1}{2}$.

点评 本题主要考查了一次函数图象上点的坐标特征以及等边三角形的性质的运用,解决问题的关键是依据等边三角形的性质找出规律,求得An的横坐标为$\frac{{2}^{n}-1}{2}$.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.如图,菱形ABCD的对角线相交于点O,对角线AC=6,BD=8,点E在BC的延长线上,且OE=OB,连接DE.
(1)求证:DE⊥BE;
(2)求△EOC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,P是$\widehat{AB}$所对弦AB上一动点,过点P作PM⊥AB交$\widehat{AB}$于点M,连接MB,过点P作PN⊥MB于点N.已知AB=6cm,设A、P两点间的距离为x cm,P、N两点间的距离为y cm.(当点P与点A或点B重合时,y的值为0)

小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
下面是小东的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了x与y的几组值,如下表:
x/cm0123456
y/cm02.02.32.11.60.90
(说明:补全表格时相关数值保留一位小数)
(2)建立平面直角坐标系,描出已补全后的表中各对对应值为坐标的点,画出该函数的图象.
(3)结合画出的函数图象,解决问题:当△PAN为等腰三角形时,AP的长度约为2.2cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,在平行四边形ABCD中,AE=CF,AE与CF交于点O.求证:∠AOB=∠COB.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,AB是⊙O直径,点C在⊙O上,AD平分∠CAB,BD是⊙O的切线,AD与BC相交于点E.
(1)求证:BD=BE;
(2)若DE=2,BD=$\sqrt{5}$,求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是(  )
A.当AB=BC时,它是菱形B.当AC=BD时,它是正方形
C.当∠ABC=90°时,它是矩形D.当AC⊥BD时,它是菱形

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.一个多边形的内角和等于900°,则这个多边形是七边形.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,四边形ABCD内接于⊙O,点E在BC的延长线上,若∠BOD=120°,则∠DCE=60°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.问题提出
(1)如图①,△ABC是等边三角形,AB=12,若点O是△ABC的内心,则OA的长为4$\sqrt{3}$;
问题探究
(2)如图②,在矩形ABCD中,AB=12,AD=18,如果点P是AD边上一点,且AP=3,那么BC边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?若存在,求出PQ的长;若不存在,请说明理由.
问题解决
(3)某城市街角有一草坪,草坪是由△ABM草地和弦AB与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB(即每次喷灌时喷灌龙头由MA转到MB,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.
如图③,已测出AB=24m,MB=10m,△AMB的面积为96m2;过弦AB的中点D作DE⊥AB交$\widehat{AB}$于点E,又测得DE=8m.
请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米)

查看答案和解析>>

同步练习册答案