精英家教网 > 初中数学 > 题目详情
2.如图⊙O中,半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC,若AB=8,CD=2,则EC的长度为(  )
A.2$\sqrt{5}$B.8C.2$\sqrt{10}$D.2$\sqrt{13}$

分析 连结BE,设⊙O的半径为R,由OD⊥AB,根据垂径定理得AC=BC=$\frac{1}{2}$AB=4,在Rt△AOC中,OA=R,OC=R-CD=R-2,根据勾股定理得到(R-2)2+42=R2,解得R=5,则OC=3,由于OC为△ABE的中位线,则BE=2OC=6,再根据圆周角定理得到∠ABE=90°,然后在Rt△BCE中利用勾股定理可计算出CE.

解答 解:连结BE,设⊙O的半径为R,如图,
∵OD⊥AB,
∴AC=BC=$\frac{1}{2}$AB=$\frac{1}{2}$×8=4,
在Rt△AOC中,OA=R,OC=R-CD=R-2,
∵OC2+AC2=OA2
∴(R-2)2+42=R2,解得R=5,
∴OC=5-2=3,
∴BE=2OC=6,
∵AE为直径,
∴∠ABE=90°,
在Rt△BCE中,CE=$\sqrt{B{C}^{2}+B{E}^{2}}$=$\sqrt{{6}^{2}+{4}^{2}}$=2$\sqrt{13}$.
故选D.

点评 本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理、圆周角定理.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.已知:如图,在△ABC中,∠A=∠ABC,直线EF分别交△ABC的边AB、AC和CB的延长线于点D、E、F.求证:∠F+∠FEC=2∠A.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.在下列各数:-0.333…,$\sqrt{4}$,$\sqrt{5}$,-π,3π,3.1415,2.010101…(相邻两个1之间有1个0),76.0123456…(小数部分由相继的正整数组成)中,是无理数的有(  )
A.3个B.4个C.5个D.6个

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如果|a|=3,|b|=1,且a<b<0,那么a+b的值是-4.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,矩形ABCD的外接圆O与水平地面有唯一交点A,圆O的半径为4,且$\widehat{BC}$=2$\widehat{AB}$.若在没有滑动的情况下,将圆O向右滚动,使得O点向右移动了98π,则此时该圆与地面交点在(  )上.
A.$\widehat{AB}$B.$\widehat{BC}$C.$\widehat{CD}$D.$\widehat{DA}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如图,四边形PAOB是扇形OMN的内接矩形,顶点P在$\widehat{MN}$上,且不与M、N重合,当P点在$\widehat{MN}$上移动时,矩形PAOB的形状,大小随之变化,则AB的长度(  )
A.不变B.变小C.变大D.不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.小明做数学作业时遇到一道证明题:求证三角形的三条角平分线交于一点.
小明首先根据题意画出图形如图1.

然后他将原命题转化为:
已知:在△ABC中,∠ABC和∠ACB的平分线交于点I,求证:AI是∠BAC的角平分线.
(1)请帮小明补全命题的结论:AI是∠BAC的角平分线;
(2)结合图2,补全下面证明过程(括号中填写定理内容)
作IP⊥BC于点P,IQ⊥AC于点Q,IR⊥AB于点R.
∵BI平分∠ABC,IP⊥BC,IR⊥AB
∴IP=IR(角的平分线上的点,到角两边的距离相等)
同理:IP=IQ
∴IQ=IR
又∵IQ⊥AC,IR⊥AB
∴AI平分∠BAC(到角两边的距离相等的点在这个角的平分线上)
(3)根据上述结论,完成下述作图任务:
如图3,有一张矩形纸片,上面画有一个角的两边m,n,但是这个角的顶点P在纸片的外部,试在纸片上作出∠P的平分线.(要求:尺规作图,不得折纸,不得超出矩形纸片,保留作图痕迹,不必写作法)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如图,在一张无穷大的格纸上,格点的位置可用数对(m,n)表示,如点A的位置为(3,3),点B的位置为(6,2).点M从(0,0)开始移动,规律为:第1次向右移动1个单位到(1,0),第2次向上移动2个单位到(1,2),第3次向右移动3个单位到(4,2),…,第n次移动n个单位(n为奇数时向右,n为偶数时向上),那么点M第27次移动到的位置为(  )
A.(182,169)B.(169,182)C.(196,182)D.(196,210)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知:如图,△ABC中,BC=12,点O是BC上的一个动点,连结AO,点P也是AO上的一个动点,过点P作PD∥AB交BC于D,PE∥AC交BC于E.
(1)若点O是BC上的中点,点P也是AO的中点时,求DE的长.
(2)若AP=2PO,求DE的长.

查看答案和解析>>

同步练习册答案