精英家教网 > 初中数学 > 题目详情
A、B两地相距300千米,甲、乙两辆火车分别从A、B两地同时出发,相向而行,如图,l1,l2分别表示两辆火车离A地的距离s(千米)与行驶时间t(时)的关系.
(1)l1表示哪辆火车离A地的距离与行驶时间的关系?
(2)1小时后,两车相距多少千米?
(3)求出l1,l2分别表示的两辆火车的s与t的函数关系式.
(4)行驶多长时间后,甲、乙两车相遇?
(1)由题意,得
l1表示乙火车离A地的距离与行驶时间的关系;
(2)由函数图象,得
1小时后,两车的距离为:240-40=200米.
答:1小时后,两车的距离为200米;
(3)设l1的解析式为s=k1t+b,l2的解析式为s=k2t,由题意,得
300=b
240=k1+b
或40=k2
解得:
k1=-60
b=300
,k2=40
∴l1的解析式为s=-60t+300,
l2的解析式为s=40t.
(4)由题意,得
当l1=l2时,
-60t+300=40t,
解得:t=3.
答:行驶3小时后,甲、乙两车相遇.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,一束光线从点A(3,3)出发,经Y轴上点c反射后正好经过点B(1,0),则点C在Y轴上的位置为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,直线AB交x轴于点A,交y轴于点B,点C、E在直线AB上,过点C作直线AB的垂线交y轴于点D,且OD=CD=CE.点C的坐标为(a,b),a、b(a>b)是方程x2-12x+32=0的解.
(1)求DC的长;
(2)求直线AB的解析式;
(3)在x轴的正半轴上是否存在点Q,使△OCB和△OCQ相似?若存在,请直接写出Q点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,将△ABC放在平面直角坐标系中,使B、C在X轴正半轴上,若AB=AC.且A点坐标为(3,2),B点坐标为(1,0).
(1)求边AC所在直线的解析式;
(2)若坐标平面内存在三角形与△ABC全等且有一条公共边,请写出这些三角形未知顶点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知点A(-6,1),B(-1,5),在x轴上有点C(m,0),在y轴上有点D(0,n),使AB+BD+CD+CA最短.求
m
n
的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

我们知道海拔一定高度的山区气温随着海拔高度的增加而下降.小明暑假到黄山去旅游,沿途他利用随身所带的测量仪器,测得以下数据:
海拔高度x(m)1400150016001700
气温y(°C)32.0031.4030.8030.20
(1)现以海拔高度为x轴,气温为y轴建立平面直角坐标系,根据提供的数据描出各点;
(2)已知y与x的关系是一次函数关系,求出这个关系式;
(3)若小明到达黄山天都峰时测得当时的气温是29.24°C.求黄山天都峰的海拔高度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知一次函数y=kx+b的图象经过点A(-2,-3)及点B(1,6).
(1)求此一次函数解析式;
(2)画出此一次函数图象草图;
(3)求此函数图象与坐标围成的三角形的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

一艘轮船从甲港出发,顺流航行3小时到达乙港,休息1小时后立即返回.一艘快艇在轮船出发2小时后从乙港出发,逆流航行2小时到甲港,立即返回(掉头时间忽略不计).已知轮船在静水中的速度是22千米/时,水流速度是2千米/时.下图表示轮船和快艇距甲港的距离y(千米)与轮船出发时间x(小时)之间的函数关系式,结合图象解答下列问题:
(顺流速度=船在静水中速度+水流速度,逆流速度=船在静水中速度-水流速度)

(1)甲、乙两港口的距离是______千米;快艇在静水中的速度是______千米/时;
(2)求轮船返回时的解析式,写出自变量取值范围;
(3)快艇出发多长时间,轮船和快艇在返回途中相距12千米?(直接写出结果)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

一个车间有工人20名,已知每个工人每天可制造甲种零件6个或乙种零件5个,每造一个甲种零件可获利润150元,每制造一个乙种零件可获利润260元,在这20人中,车间每天安排x名制造甲种零件,其余人去制造乙种零件.
(1)写出此车间每天所获利润y元与x之间的函数关系式;
(2)如果要车间每天所获利润不低于24000元,至少应派多少工人去制造乙种零件?

查看答案和解析>>

同步练习册答案