精英家教网 > 初中数学 > 题目详情
如图,抛物线y=-
1
3
x2+(6-
m2
)x+m-3与x轴交于A(x1,0)、B(x2,0)两点(精英家教网x1<x2),交y轴于C点,且x1+x2=0.
(1)求抛物线的解析式,并写出顶点坐标及对称轴方程.
(2)在抛物线上是否存在一点P使△PBC≌△OBC?若存在,求出点P的坐标;若不存在,请说明理由.
分析:(1)根据x1+x2=0,可得出抛物线的对称轴为y轴即x=0,由此可求出m的值.进而可求出抛物线的解析式.根据抛物线的解析式即可得出其顶点坐标和对称轴方程.
(2)如果△PBC≌△OBC,由于△OBC是等腰直角三角形,那么P有两种可能:①P,O重合;②P与O关于直线BC对称,而这两种P点均不在抛物线上,因此不存在这样的P点.
解答:解:(1)m=±6,
∵抛物线与y轴交于正半轴上,
∴m=6.
抛物线解析式y=-
1
3
x2+3,
∴抛物线顶点坐标C(0,3),抛物线对称轴方程x=0.

(2)B点坐标为(3,0).
假设存在一点P使△PBC≌△OBC.
因为△OBC是等腰直角三角形,BC是公共边,
故P点与O点必关于BC所在直线对称.点P坐标是(3,3).
当x=3时,y≠3,即点P不在抛物线上,
所以不存在这样的点P,使△PBC≌△OBC.
点评:本题主要考查了二次函数的性质、二次函数解析式的确定以及全等三角形的判定等知识点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,抛物线C1,C2关于x轴对称;抛物线C1,C3关于y轴对称.抛物线C1,C2,C3与x轴相交于A、B、C、D四点;与y相交于E、F两点;H、G、M分别为抛物线C1,C2,C3的顶点.HN垂直于x轴,垂足为N,且|OE|>|HN|,|AB|≠|HG|
(1)A、B、C、D、E、F、G、H、M9个点中,四个点可以连接成一个四边形,请你用字母写出下列特殊四边形:菱形
AHBG
;等腰梯形
HGEF
;平行四边形
EGFM
;梯形
DMHC
;(每种特殊四边形只能写一个,写错、多写记0分)
(2)证明其中任意一个特殊四边形;
(3)写出你证明的特殊四边形的性质.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,抛物线交x轴于点A(-2,0),点B(4,0),交y轴于点C(0,4).
(1)求抛物线的解析式,并写出顶点D的坐标;
(2)若直线y=x交抛物线于M,N两点,交抛物线的对称轴于点E,连接BC,EB,EC.试判断△EBC的形状,并加以证明;
(3)设P为直线MN上的动点,过P作PF∥ED交直线MN上方的抛物线于点F.问:在直线MN上是否存在点P,使得以P,E,D,F为顶点的四边形是平行四边形?若存在,请求出点P及相应的点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线的顶点坐标为M(1,4),与x轴的一个交点是A(-1,0),与y轴交于点B,直线x=1交x轴于点N.
(1)求抛物线的解析式及点B的坐标;
(2)求经过B、M两点的直线的解析式,并求出此直线与x轴的交点C的坐标;
(3)若点P在抛物线的对称轴x=1上运动,请你探索:在x轴上方是否存在这样的P点,使精英家教网以P为圆心的圆经过点A,并且与直线BM相切?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=ax2+bx+c交x轴于点A(-3,0),点B(1,0),交y轴于点E(0,-3)精英家教网.点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F且与y轴平行.直线y=-x+m过点C,交y轴于D点.
(1)求抛物线的函数表达式;
(2)点K为线段AB上一动点,过点K作x轴的垂线与直线CD交于点H,与抛物线交于点G,求线段HG长度的最大值;
(3)在直线l上取点M,在抛物线上取点N,使以点A,C,M,N为顶点的四边形是平行四边形,求点N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,抛物线y=ax2+bx+c(a≠0)与x轴两交点是A(-1,0),B(3,0),则如图可知y<0时,x的取值范围是(  )
A、-1<x<3B、3<x<-1C、x>-1或x<3D、x<-1或x>3

查看答案和解析>>

同步练习册答案