精英家教网 > 初中数学 > 题目详情
23、将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起:
(1)若∠DCE=35°,则∠ACB的度数为
145°

(2)若∠ACB=140°,求∠DCE的度数;
(3)猜想∠ACB与∠DCE的大小关系,并说明理由;
(4)三角尺ACD不动,将三角尺BCE的CE边与CA边重合,然后绕点C按顺时针或逆时针.方向任意转动一个角度,当∠ACE(0°<∠ACE<90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠ACE角度所有可能的值,不用说明理由.
分析:(1)由于是两直角三角形板重叠,重叠的部分就比90°+90°减少的部分,所以若∠DCE=35°,则∠ACB的度数为180°-35°=145°.
(2)题与(1)正好相反,是已知重叠后的度数,因此若∠ACB=140°,则∠DCE的度数为180°-140°=40°.
(3)由于∠ACD=∠ECB=90°,重叠的度数就是∠ECD的度数,所以∠ACB+∠DCE=180°.
(4)分别是30°、45°、60°、75°.
解答:解:(1)∵∠ACD=∠ECB=90°,
∴∠ACB=180°-35°=145°.

(2)∵∠ACD=∠ECB=90°,
∴∠DCE=180°-140°=40°.

(3)∵∠ACE+∠ECD+∠DCB+∠ECD=180.
∵∠ACE+∠ECD+∠DCB=∠ACB,
∴∠ACB+∠DCE=180°,即∠ACB与∠DCE互补.

(4)30°、45°、60°、75°.
点评:解决本题的关键是理解重叠的部分实质是两个角的重叠.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°):
(1)①若∠DCE=45°,则∠ACB的度数为
135°
135°

②若∠ACB=140°,求∠DCE的度数;
(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由.
(3)当∠ACE<180°且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE角度所有可能的值(不必说明理由);若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

将一副三角板中的两块三角板重合放置,其中45°和30°的两个角顶点重合在一起.
(1)如图1所示,边OA与OC重合,此时,AB∥CD,则∠BOD=
15°
15°

(2)三角板△COD的位置保持不动,将三角板△AOB绕点O顺时针方向旋转,如图2,此时OA∥CD,求出∠BOD的大小;
(3)在图2中,若将三角板△AOB绕点O按顺时针方向继续旋转,在转回到图1的过程中,还存在△AOB中的一边与CD平行的情况,请针对其中一种情况,画出图形,并直接写出∠BOD的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

将一副三角板中的两块三角板重合放置,其中45°和30°的两个角顶点重合在一起.
(1)如图1所示,边OA与OC重合,恰好CD∥AB,则∠BOD=
15°
15°

(2)三角板△COD的位置保持不动,将三角板△AOB绕点O顺时针方向旋转,如图2,此时CD∥OA,求出∠BOD的大小;
(3)若将三角板△AOB绕点O旋转一周过程中,除图1、图2外,是否还存在△AOB中的一边与CD平行的情况?如果存在,请你画出图形,并直接写出相应的∠BOD的大小;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起:
 
(1)若∠DCE=35°,则∠ACB的度数为   ▲  °;
(2)若∠ACB=140°,则∠DCE的度数为   ▲  °;
(3)∠ACB与∠DCE有怎样的数量关系?
(4)三角尺ACD不动,将三角尺BCECE边与CA边重合,然后绕点C按顺时针或逆时针方向任意转动一个角度,当∠ACE(0°<∠ACE<90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠ACE角度所有可能的值,不用说明理由.

查看答案和解析>>

同步练习册答案