精英家教网 > 初中数学 > 题目详情
美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.某女模特身高165cm,下半身长x(cm)与身高l(cm)的比值是0.60.为尽可能达到好的效果,她应穿的高跟鞋的高度大约为(  )
A.4cmB.6cmC.8cmD.10cm
∵模特身高165cm,下半身长x(cm)与身高l(cm)的比值是0.60,
x
165
=0.60,
解得:x=99,
设需要穿的高跟鞋是ycm,则根据黄金分割的定义得:
99+y
165+y
=0.618,
解得:y≈8.
故选C.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,D是BC边上的点(不与点B、C重合),连结AD.
问题引入:
(1)如图①,当点D是BC边上的中点时,SABD:SABC=   ;当点D是BC边上任意一点时,SABD:SABC=   (用图中已有线段表示).
探索研究:
(2)如图②,在△ABC中,O点是线段AD上一点(不与点A、D重合),连结BO、CO,试猜想SBOC与SABC之比应该等于图中哪两条线段之比,并说明理由.
拓展应用:
(3)如图③,O是线段AD上一点(不与点A、D重合),连结BO并延长交AC于点F,连结CO并延长交AB于点E,试猜想的值,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

好学的小宸利用电脑作了如下的探索:
(1)如图①,将边长为2的等边三角形复制若干个后向右平移,使一条边在同一直线上.则△A2C1B1的面积为   
(2)求△A4C3B3的面积;
(3)在保持图①中各三角形的边OB1=B1B2=B2B3=B3B4=2不变的前提下,小宸又作了如下探究:将顶点A1、A2、A3、A4向上平移至同一高度(如图②),若OA4=OB4,试判断以OA2、OA3和OA4为三边能否构成三角形?若能,请判断这个三角形的形状;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC三个顶点的坐标分别为A(2,7),B(6,8),C(8,2),请你分别完成下面的作图并标出所有顶点的坐标.(不要求写出作法)
(1)以O为位似中心,在第三象限内作出△A1B1C1,使△A1B1C1与△ABC的位似比为1:2;
(2)△A1B1C1的面积是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

点C为线段AB的黄金分割点且AB=2,则较小线段BC≈______(精确到0.01).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(如图1),点P将线段AB分成一条较小线段AP和一条较大线段BP,如果
AP
BP
=
BP
AB
,那么称点P为线段AB的黄金分割点,设
AP
BP
=
BP
AB
=k,则k就是黄金比,并且k≈0.618.

(1)以图1中的AP为底,BP为腰得到等腰△APB(如图2),等腰△APB即为黄金三角形,黄金三角形的定义为:满足
=
底+腰
≈0.618的等腰三角形是黄金三角形;类似地,请你给出黄金矩形的定义:______;
(2)如图1,设AB=1,请你说明为什么k约为0.618;
(3)由线段的黄金分割点联想到图形的“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成面积为S1和面积为S2的两部分(设S1<S2),如果
S1
S2
=
S2
S
,那么称直线l为该图形的黄金分割线.(如图3),点P是线段AB的黄金分割点,那么直线CP是△ABC的黄金分割线吗?请说明理由;
(4)图3中的△ABC的黄金分割线有几条?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

我们知道,将一条线段AB分割成大小两条线段AP、PB,若小段PB与大段AP的长度之比等于大段AP与全段AB的长度之比,此时线段AP叫做线段AB、PB的比例中项,这种分割叫做黄金分割,点P叫做线段AB的黄金分割点.
那么,一条线段的黄金分割点的个数是______;
如图,已知线段AB,要求利用尺规作图的方法,在图中作出线段AB的一个黄金分割点,并简要说明作法(不要求证明)______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

某木材加工厂生产一种豪华型办公桌,其宽b与长a的比恰好为黄金分割数(即
b
a
=
5
-1
2
).现在办公桌四周镶上某种规格的合金作为装饰,当a=2m时,需要合金的长度为______m.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列命题正确的是(  )
A.所有等腰三角形都相似
B.所有的矩形都相似
C.所有的菱形一定相似
D.有一对锐角相等的直角三角形一定相似

查看答案和解析>>

同步练习册答案