精英家教网 > 初中数学 > 题目详情
如图,正方形的面积为36cm2,M是对角线AC上一点,且ME⊥AB于E,MF⊥BC于F,则ME+MF=______cm.
∵正方形的面积为36cm2,∴AB=BC=6cm,
∵AC是正方形ABCD的对角线,∴∠MAE=45°,
∵ME⊥AB于E,∴∠AEM=90°,
∴∠AME=45°,AE=EM…①,
∵ME⊥AB于E,MF⊥BC于F,∠EBF=90°,
∴四边形EBFM是矩形,∴BE=MF…②,
∴ME+MF=AE+BE=AB=6cm.
故答案为6
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D,E分别在AC,BC边上运动,且保持AD=CE.连接DE,DF,EF.在此运动变化的过程中,下列结论:
①△DFE是等腰直角三角形;
②四边形CDFE不可能为正方形,
③DE长度的最小值为4;
④四边形CDFE的面积保持不变;
⑤△CDE面积的最大值为8.
其中正确的结论是(  )
A.①②③B.①④⑤C.①③④D.③④⑤

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,四边形ABCD是正方形,E、F是AD延长线上的点,且DE=DC,DF=BD,求证:DH=GH.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,ABCD为正方形,E、F分别在BC、CD上,且△AEF为正三角形,四边形A′B′C′D′为△AEF的内接正方形,△A′E′F′为正方形A′B′C′D′的内接正三角形.
(1)试猜想
SA′B′C′D′
SABCD
S△A′E′F′
S△AEF
的大小关系,并证明你的结论;
(2)求
SA′B′C′D′
SABCD
的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图所示,正方形ABCD的对角线AC,BD相交于点O,DE平分∠ODC交OC于点E,若AB=2,则线段OE的长为(  )
A.
2
2
B.
2
2
3
C.2-
2
D.
2
-1

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,正方形ABCD的边长是10cm,点E,F,G,H分别从点A,B,C,D出发,以2cm/s的速度同时向点B,C,D,A运动.
(1)在运动的过程中,四边形EFGH是何种四边形?并说明理由.
(2)运动多少秒后,四边形EFGH的面积是52cm2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知(如图):正方形ABCD的边长为b,正方形DEFG的边长为a.
求:(1)梯形ADGF的面积;
(2)三角形AEF的面积;
(3)三角形AFC的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

四边形ABCD的对角线AC和BD相交于O点,则下列几组条件中能判定它是正方形的是______.(只需要填上序号)
①AB=BC=CD=DA,AC=BD;
②AO=CO,BO=DO,AC⊥BD,AB⊥BC;
③四边形ABCD是矩形,并且BC⊥CD;
④四边形ABCD是菱形,并且AC=BD.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

边长为4的正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过点P作PF⊥CD于点F,作PE⊥PB交直线CD于点E,设PA=x,S△PCE=y,
(1)求证:DF=EF;
(2)当点P在线段AO上时,求y关于x的函数关系式及自变量x的取值范围;
(3)在点P的运动过程中,△PEC能否为等腰三角形?如果能够,请直接写出PA的长;如果不能,请简单说明理由.

查看答案和解析>>

同步练习册答案