精英家教网 > 初中数学 > 题目详情
13.求证:平行四边形一组对边中点的连线必与对角线互相平分.

分析 根据题意画出图形,写出已知,求证;证明四边形AFCE是平行四边形,得出EF与AC互相平分,同理:EF与BD互相平分.

解答 如图所示:已知平行四边形ABCD中,E、F分别是AD、BC的中点,
求证:EF与AC互相平分,EF与BD互相平分;
证明:连接AF、CE,
如图:
∵四边形ABCD是平行四边形
∴AD∥BC,AD=BC,
∵E、F分别是AD、BC的中点,
∴AE=CF=DE=BF,
又∵AD∥BC,
∴四边形AFCE是平行四边形,∴EF与AC互相平分,
同理:EF与BD互相平分.

点评 本题考查了平行四边形的判定与性质;熟练掌握平行四边形的判定与性质,证明四边形AFCE是平行四边形是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

3.如图,点A,B,C都在⊙O上,若∠OAC=17°,∠ACB=46°,AC与OB交于点D,则∠ODA的度数为71度.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,在矩形ABCD内放入六个小正方形后形成一个中心对称图形,其中顶点E、F分别在边BC、AD上,则长AD与宽AB的比值为(  )
A.6:5B.13:10C.8:7D.4:3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知,在平面直角坐标系中,A(m-2,a),B(m+2,b),且有理数a,b满足a+2+$\sqrt{2}$b=4$\sqrt{2}$+b.
(1)试求出a,b的值,并直接写出以AB为对角线的平行四边形AOBC的第四顶点C的纵坐标;
(2)若△AOB的面积为9,求m的值;
(3)若直线AB与x轴交于点D,当线段AB平移时,△ABC的面积:△AOD的面积是否是定值?若是定值,请求出该值,并说明理由;若不是,请指出它的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.(1)如图1,已知△ABC,∠C=90°,AC<BC,D为BC上一点,且到A,B两点的距离相等,用尺规作出点D的位置;
(2)如图2,已知△ABC,∠A=90°,用尺规作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切;
(3)如图3,用尺规过点A作BC边的垂线MN,交BC于点D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图是一服装包装袋挂于墙上的示意图,绳子BAC挂在墙上支点A处,为使包装袋平衡,绳子均匀的挂在A点处(即AB=AC),绳子的总长为30cm,此时绳子与水平线夹角为72°.
(1)求袋子两支点BC的距离;
(2)为了让包装袋离地面更远,先在绳子上打一个结,然后均匀的挂在A点处,使得绳子与水平线的夹角为30°,求绳子减少的长度(结果精确到0.1cm,参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08,$\sqrt{2}$≈1.41,$\sqrt{3}$≈1.73).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图1所示,在?ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿射线AC的方向匀速平移得到△PNM,速度为1cm/s,同时,点Q从点C出发,沿射线CB方向匀速运动,速度为1cm/s,当△PNM停止平移时,点Q也停止运动,如图2所示,设运动时间为t(s)(0<t<4).
(1)当t为何值时,PQ∥MN?
(2)设△QMC的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使得PQ=QM,若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.一元二次方程x2-2x-6=0,其中较大的一个根为x1,下列最接近x1的范围是(  )
A.3<x1<4B.3<x1<3.5C.3.5<x1<3.7D.3.7<x1<4

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.一个三角形的两边长为8和10,则它的最长边的取值范围是10≤a<18.

查看答案和解析>>

同步练习册答案