精英家教网 > 初中数学 > 题目详情
14.设m,n是方程x2-2x-2016=0的两个实数根,则m2+n2的值为4036.

分析 根据根与系数关系可得m+n=2,mn=-2016,然后即可求得答案.

解答 解:∵m,n是方程x2-2x-2016=0的两个实数根,
∴m+n=2,mn=-2016,
∴m2+n2=(m+n)2-2mm=4-2(-2016)=4036,
故答案为:4036.

点评 本题主要考查了根与系数的关系,解题的关键是求出m+n=2,mn=-2016,此题难度不大.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.我县万德隆商场有A、B两种商品的进价和售价如表:
商品
价格
AB
进价(元/件)mm+20
售价(元/件)160240
已知:用2400元购进A种商品的数量与用3000元购进B种商品的数量相同.
(1)求m的值;
(2)该商场计划同时购进的A、B两种商品共200件,其中购进A种商品x件,实际进货时,生产厂家对A种商品的出厂价下调a(50<a<70)元出售,若商场保持同种商品的售价不变,商场售完这200件商品的总利润为y元.
①求y关于x的函数关系式;
②若限定A种商品最多购进120件最少购进100件,请你根据以上信息,设计出使该商场获得最大利润的进货方案.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.如图,平行四边形ABCD中,AB=2,BC=4,∠ABC=60°,E是BC的中点,点P、Q分别从A、E出发,沿着四边形的边向D点移动,移动时始终保持PQ∥AE,设△BPQ的面积是y,AP=x,则y关于x的函数图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知动点P以每秒2cm的速度沿如图(1)所示的边框按从B→C→D→E→F→A的路径移动,相应的三角形ABP的面积S(cm2)关于时间t(s)的函数图象如图(2)所示,若AB=6cm,试回答下列问题:

(1)如图(1),BC的长是多少?图形面积是多少?
(2)如图(2),图中的a是多少?b是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.“十字相乘法”能把二次三项式分解因式,对于形如ax2+bxy+cy2的关于x,y的二次三项式来说,方法的关键是把x2项系数a分解成两个因数a1,a2的积,即a=a1•a2,把y2项系数c分解成两个因数c1,c2的积,即c=c1•c2,并使a1•c2+a2•c1正好等于xy项的系数b,那么可以直接写成结果:ax2+bxy+cy2=(a1x+c1y)(a2x+c2y).
例:分解因式:x2-2xy-8y2
解:如图1,其中1=1×1,-8=(-4)×2,而-2=1×2+1×(-4).
∴x2-2xy-8y2=(x-4y)(x+2y)
而对于形如ax2+bxy+cy2+dx+ey+f的x,y的二元二次式也可以用十字相乘法来分解,如图2,将a分解成mn乘积作为一列,c分解成pq乘积作为第二列,f分解成jk乘积作为第三列,如果mq+np=b,pk+qj=e,mk+nj=d,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式=(mx+py+j)(nx+qy+k);
例:分解因式:x2+2xy-3y2+3x+y+2
解:如图3,其中1=1×1,-3=(-1)×3,2=1×2;
而2=1×3+1×(-1),1=(-1)×2+3×1,3=1×2+1×1;
∴x2+2xy-3y2+3x+y+2=(x-y+1)(x+3y+2)
请同学们通过阅读上述材料,完成下列问题:
(1)分解因式:
①6x2-17xy+12y2=(3x-4y)(2x-3y)
②2x2-xy-6y2+2x+17y-12=(x-2y+3)(2x+3y-4)
③x2-xy-6y2+2x-6y=(x-3y)(x+2y+2)
(2)若关于x,y的二元二次式x2+7xy-18y2-5x+my-24可以分解成两个一次因式的积,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图,点P是⊙O的直径BA延长线上一点,PC与⊙O相切于点C,CD⊥AB,垂足为D,连接AC、BC、OC,那么下列结论中:①PC2=PA•PB;②PC•OC=OP•CD;③OA2=OD•OP;④CD2>BD•AD,正确的有①②③.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,在矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于点F.若CF=1,FD=2,则BC的长为2$\sqrt{6}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在平面直角坐标系中,直线y=x+3分別交x轴、y轴于A、C两点,抛物线y=ax2+bx+c(a≠0),经过A,C两点,与x轴交于点B(1,0)

(1)求抛物线的解析式;
(2)点D为直线AC上一点,点E为拋物线上一点,且D,E两点的横坐标都为2,点F为x轴上的点,若四边形ADFE是平行四边形,请直接写出点F的坐标;
(3)若点P是线段AC上的一个动点,过点P作x轴的垂线,交拋物线于点Q,连接AQ,CQ,求△ACQ的面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.半径为4的正n边形边心距为2$\sqrt{3}$,则此正n边形的边数为6.

查看答案和解析>>

同步练习册答案