A. | abc>0 | B. | 2a-b=0 | C. | 4a+2b+c<0 | D. | 9a+3b+c=0 |
分析 根据二次函数y=ax2+bx+c(a≠0)的图象可判断abc<0,根据对称轴为x=1可判断出2a+b=0,当x=2时,4a+2b+c>0,当x=3时,9a+3b+c=0
解答 解:∵抛物线的开口向下,则a<0,对称轴在y轴的右侧,∴b>0,图象与y轴交于正半轴上,
∴c>0,∴abc<0,:∵对称轴为x=1,
∴x=-$\frac{b}{2a}$=1,
∴-b=2a,
∴2a+b=0,
当x=2时,4a+2b+c>0,
当x=3时,9a+3b+c=0,
故选D.
点评 此题主要考查了二次函数与图象的关系,关键掌握二次函数y=ax2+bx+c(a≠0)
①二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;|a|还可以决定开口大小,|a|越大开口就越小.
②一次项系数b和二次项系数a共同决定对称轴的位置. 当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点. 抛物线与y轴交于(0,c).
科目:初中数学 来源: 题型:选择题
A. | x=$\frac{1+2y}{3}$ | B. | y=$\frac{3x-1}{2}$ | C. | y=$\frac{1-3x}{2}$ | D. | x=$\frac{1-2y}{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 128人 | B. | 133人 | C. | 148人 | D. | 149人 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com