一个反比例函数的图象经过点A(1,3),O是原点,
(1)求该反比例函数解析式;
(2)点B是反比例函数图象上一点,过点B做BC⊥x轴于C,做BD⊥y轴于D,四边形OCBD的周长为8,求OB长.

解:(1)设反比例函数解析式为y=

,
将点A(1,3)代入y=

得,k=3,
则函数解析式为y=

.
(2)∵四边形OCBD为矩形,
∴四边形OCBD的面积为3,
∴OC•CB=3,
∵OC+BC=4,
∴(OC+BC)
2=16,
∴OC
2+BC
2+2OC•BC=16,
∴OC
2+BC
2=16-2OC•BC,
∴OB
2=16-2×3=10;
∴OB=

.
分析:(1)设反比例函数解析式为y=

,将点A(1,3)代入y=

即可得到k=3,从而得到函数解析式;
(2)根据反比例函数k的几何意义求出四边形的面积,再结合四边形的周长求出OC
2+BC
2的值,根据勾股定理即可得到OB的长.
点评:本题考查了反比函数的几何意义以及待定系数法求函数解析式,要灵活运用所学知识进行解答.