精英家教网 > 初中数学 > 题目详情
(2005•中山)如图,等腰梯形ABCD中,AD∥BC,M、N分别是AD、BC的中点,E、F分别是BM、CM中点.
(1)求证:四边形MENF是菱形;
(2)若四边形MENF是正方形,请探索等腰梯形ABCD的高和底边BC的数量关系,并证明你的结论.

【答案】分析:(1)根据等腰梯形的中位线的性质求出四边形四边相等即可;
(2)利用等腰梯形的性质和正方形的性质解答.
解答:(1)证明:∵四边形ABCD为等腰梯形,
∴AB=CD,∠A=∠D.
∵M为AD的中点,
∴AM=DM.(2分)
∴△ABM≌△DCM.(1分)
∴BM=CM.(1分)
∵E、F、N分别是MB、CM、BC的中点,
∴EN、FN分别为△BMC的中位线,
∴EN=MC,FN=MB,
且ME=BE=MB,MF=FC=MC.
∴EN=FN=FM=EM.
∴四边形ENFM是菱形.(1分)

(2)解:结论:等腰梯形ABCD的高是底边BC的一半.
理由:连接MN,
∵BM=CM,BN=CN,
∴MN⊥BC.
∴MN是梯形ABCD的高.(2分)
又∵四边形MENF是正方形,
∴∠EMF=90°,
∴△BMC为直角三角形.
又∵N是BC的中点,
∴MN=BC.(1分)
即等腰梯形ABCD的高是底边BC的一半.
点评:本题比较复杂,涉及面较广,需要同学们把所学知识系统化,提高自己对所学知识的综合运用运用能力.
练习册系列答案
相关习题

科目:初中数学 来源:2005年全国中考数学试题汇编《二次函数》(06)(解析版) 题型:解答题

(2005•中山)如图所示,在平面直角坐标中,抛物线的顶点P到x轴的距离是4,抛物线与x轴相交于O、M两点,OM=4;矩形ABCD的边BC在线段的OM上,点A、D在抛物线上.
(1)请写出P、M两点坐标,并求出这条抛物线的解析式;
(2)设矩形ABCD的周长为l,求l的最大值;
(3)连接OP、PM,则△PMO为等腰三角形,请判断在抛物线上是否存在点Q(除点M外),使得△OPQ也是等腰三角形,简要说明你的理由.

查看答案和解析>>

科目:初中数学 来源:2005年广东省中山市中考数学试卷(课标卷)(解析版) 题型:解答题

(2005•中山)如图所示,在平面直角坐标中,抛物线的顶点P到x轴的距离是4,抛物线与x轴相交于O、M两点,OM=4;矩形ABCD的边BC在线段的OM上,点A、D在抛物线上.
(1)请写出P、M两点坐标,并求出这条抛物线的解析式;
(2)设矩形ABCD的周长为l,求l的最大值;
(3)连接OP、PM,则△PMO为等腰三角形,请判断在抛物线上是否存在点Q(除点M外),使得△OPQ也是等腰三角形,简要说明你的理由.

查看答案和解析>>

科目:初中数学 来源:2005年广东省中考数学试卷(课标卷)(解析版) 题型:解答题

(2005•中山)如图所示,在平面直角坐标中,抛物线的顶点P到x轴的距离是4,抛物线与x轴相交于O、M两点,OM=4;矩形ABCD的边BC在线段的OM上,点A、D在抛物线上.
(1)请写出P、M两点坐标,并求出这条抛物线的解析式;
(2)设矩形ABCD的周长为l,求l的最大值;
(3)连接OP、PM,则△PMO为等腰三角形,请判断在抛物线上是否存在点Q(除点M外),使得△OPQ也是等腰三角形,简要说明你的理由.

查看答案和解析>>

科目:初中数学 来源:2005年全国中考数学试题汇编《圆》(09)(解析版) 题型:填空题

(2005•中山)如图,PA、PB是⊙O的切线,点A、B为切点,AC是⊙O的直径,∠BAC=20°,则∠P的大小是    度.

查看答案和解析>>

科目:初中数学 来源:2005年全国中考数学试题汇编《三角形》(05)(解析版) 题型:填空题

(2005•中山)如图,已知CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD交于点O,且AO平分∠BAC,那么图中全等三角形共有    对.

查看答案和解析>>

同步练习册答案