精英家教网 > 初中数学 > 题目详情

【题目】如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过DDE⊥AC,垂足为E.

(1)证明:DE⊙O的切线;

(2)BC=4,求阴影部分的面积.

【答案】(1)证明见解析(2)

【解析】

(1)连接OD,CD,由以BC为直径的⊙O,可得∠BDC=90°,又由等腰△ABC的底角为30°,可得AD=BD,即可证得OD∥AC,继而可证得结论;(2)根据三角函数的性质,求得CD、CE、DE的长,根据S=S四边形ODEC﹣S扇形ODC即可求得阴影部分的面积

(1)证明:连接OD,CD,

BC为O直径,

∴∠BDC=90°,

∵△ABC是等腰三角形,

∴AD=BD,

∵OB=OC,

∴OD∥AC,

∵DE⊥AC,

∴OD⊥DE,

DE为O的切线;

(2)∵∠A=∠B=30°,BC=4,

∴CD=BC=2,CE=CD=1,DE=CDcos30°=

∴S=S四边形ODEC﹣S扇形ODC=(1+2)×=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图是二次函数图象的一部分图象过点A(-30)对称轴为直线x=1,给出四个结论:①c0②若点B(-1.5y1)C(-2.5y2)为函数图象上的两点,则y1y22ab=0 0.其中正确结论的个数是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)操作发现:如图,点D是等边△ABC的边AB上一动点(点D与点B不重合),连接CD,以CD为边在CD上方作等边△CDE,连接AE,则AEBD有怎样的数量关系?说明理由.

2)类比猜想:如图,若点D是等边△ABC的边BA延长线上一动点,连接CD,以CD为边在CD上方作等边CDE,连接AE,请直接写出AEBD满足的数量关系,不必说明理由;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在△ABC中,∠A=90°,AB=6,AC=8,点P在边AC上,且⊙PAB,BC都相切.

(1)求⊙P半径;

(2)求sin∠PBC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABDCBFCE,需补充一个条件,就能使ABE≌△DCF,小明给出以下四个答案:①AEDF;②AEDF;③ABDC;④∠A=∠D,其中正确的是(  )

A.①②③④B.①②③C.①②D.①③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABC中,∠CAB=90°,AC=AB=3,△CDE中,CDE=90°,CD=DE=5,连接BE,取BE中点F,连接AF、DF.

(1)如图1,若C、B、E三点共线,H为BC中点.

直接指出AF与DF的关系   

直接指出FH的长度   

(2)将图(1)中的CDE绕C点逆时针旋转a(如图2,0°<α<180°),试确定AF与DF的关系,并说明理由;

(3)在(2)中,若AF=,请直接指出点F所经历的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】低碳生活,绿色出行的理念已深入人心,现在越来越多的人选择骑自行车上下班或外出旅游.周末,小红相约到郊外游玩,她从家出发0.5小时后到达甲地,玩一段时间后按原速前往乙地,刚到达乙地,接到妈妈电话,快速返回家中.小红从家出发到返回家中,行进路程y(km)随时间x(h)变化的函数图象大致如图所示.

(1)小红从甲地到乙地骑车的速度为  km/h;

(2)当1.5≤x≤2.5时,求出路程y(km)关于时间x(h)的函数解析式;并求乙地离小红家多少千米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,点B、F、C、E在同一直线上,AC、DF相交于点G,ABBE,垂足为B,DEBE,垂足为E,且AC=DF,BF=EC.求证:

(1)ABC≌△DEF

(2)FG=CG.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,ABC的三个顶点的坐标分别为A(15)B(1-2)C(40).

1)请在图中画出ABC关于y轴对称的.

2)求ABC的面积.

3)在y轴上画出点P,使PA+PC的值最小,保留作图痕迹.

查看答案和解析>>

同步练习册答案