【题目】如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过D作DE⊥AC,垂足为E.
(1)证明:DE为⊙O的切线;
(2)若BC=4,求阴影部分的面积.
【答案】(1)证明见解析(2)
【解析】
(1)连接OD,CD,由以BC为直径的⊙O,可得∠BDC=90°,又由等腰△ABC的底角为30°,可得AD=BD,即可证得OD∥AC,继而可证得结论;(2)根据三角函数的性质,求得CD、CE、DE的长,根据S阴=S四边形ODEC﹣S扇形ODC即可求得阴影部分的面积.
(1)证明:连接OD,CD,
∵BC为⊙O直径,
∴∠BDC=90°,
∵△ABC是等腰三角形,
∴AD=BD,
∵OB=OC,
∴OD∥AC,
∵DE⊥AC,
∴OD⊥DE,
∴DE为⊙O的切线;
(2)∵∠A=∠B=30°,BC=4,
∴CD=BC=2,CE=CD=1,DE=CDcos30°=,
∴S阴=S四边形ODEC﹣S扇形ODC=(1+2)×﹣=﹣.
科目:初中数学 来源: 题型:
【题目】如图是二次函数图象的一部分,图象过点A(-3,0),对称轴为直线x=﹣1,给出四个结论:①c>0;②若点B(-1.5,y1)、C(-2.5,y2)为函数图象上的两点,则y1<y2;③2a﹣b=0;④ <0.其中正确结论的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)操作发现:如图①,点D是等边△ABC的边AB上一动点(点D与点B不重合),连接CD,以CD为边在CD上方作等边△CDE,连接AE,则AE与BD有怎样的数量关系?说明理由.
(2)类比猜想:如图②,若点D是等边△ABC的边BA延长线上一动点,连接CD,以CD为边在CD上方作等边△CDE,连接AE,请直接写出AE与BD满足的数量关系,不必说明理由;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB=DC,BF=CE,需补充一个条件,就能使△ABE≌△DCF,小明给出以下四个答案:①AE=DF;②AE∥DF;③AB∥DC;④∠A=∠D,其中正确的是( )
A.①②③④B.①②③C.①②D.①③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC中,∠CAB=90°,AC=AB=3,△CDE中,∠CDE=90°,CD=DE=5,连接BE,取BE中点F,连接AF、DF.
(1)如图1,若C、B、E三点共线,H为BC中点.
①直接指出AF与DF的关系 ;
②直接指出FH的长度 ;
(2)将图(1)中的△CDE绕C点逆时针旋转a(如图2,0°<α<180°),试确定AF与DF的关系,并说明理由;
(3)在(2)中,若AF=,请直接指出点F所经历的路径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“低碳生活,绿色出行”的理念已深入人心,现在越来越多的人选择骑自行车上下班或外出旅游.周末,小红相约到郊外游玩,她从家出发0.5小时后到达甲地,玩一段时间后按原速前往乙地,刚到达乙地,接到妈妈电话,快速返回家中.小红从家出发到返回家中,行进路程y(km)随时间x(h)变化的函数图象大致如图所示.
(1)小红从甲地到乙地骑车的速度为 km/h;
(2)当1.5≤x≤2.5时,求出路程y(km)关于时间x(h)的函数解析式;并求乙地离小红家多少千米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,点B、F、C、E在同一直线上,AC、DF相交于点G,AB⊥BE,垂足为B,DE⊥BE,垂足为E,且AC=DF,BF=EC.求证:
(1)△ABC≌△DEF;
(2)FG=CG.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,△ABC的三个顶点的坐标分别为A(1,5),B(1,-2),C(4,0).
(1)请在图中画出△ABC关于y轴对称的△.
(2)求△ABC的面积.
(3)在y轴上画出点P,使PA+PC的值最小,保留作图痕迹.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com