精英家教网 > 初中数学 > 题目详情
18.计算:$\frac{2}{b}$$\sqrt{a{b}^{5}}$•(-$\frac{3}{2}$$\sqrt{{a}^{3}b}$)÷3$\sqrt{\frac{b}{a}}$.

分析 直接利用二次根式乘除运算法则计算得出答案.

解答 解:$\frac{2}{b}$$\sqrt{a{b}^{5}}$•(-$\frac{3}{2}$$\sqrt{{a}^{3}b}$)÷3$\sqrt{\frac{b}{a}}$
=$\frac{2}{b}$×(-$\frac{3}{2}$)×$\frac{1}{3}$$\sqrt{a{b}^{5}•{a}^{3}b•\frac{a}{b}}$
=-$\frac{1}{b}$$\sqrt{{a}^{5}{b}^{5}}$
=-a2b$\sqrt{ab}$.

点评 此题主要考查了二次根式的乘除运算,正确掌握运算法则是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:若y′=$\left\{\begin{array}{l}{y(x≥0)}\\{-y(x<0)}\end{array}\right.$,则称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(-1,3)的“可控变点”为点(-1,-3).
(1)若点(-1,-2)是一次函数y=x+3图象上点M的“可控变点”,则点M的坐标为(-1,2)
(2)若点P在函数y=-x2+16(-5≤x≤a)的图象上,其“可控变点”Q的纵坐标y′的取值范围是-16≤y′≤16,求实数a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.据国家教育部、卫生部最新调查表明:我国小学生近视率超过25%,初中生近视率达到70%,每年以8%的速度增长,居世界第一位.某市为调查中学生视力情况,从全市九年级学生中抽取了部分学生,统计了每个人连续三年视力检查的结果,并将所得数据处理后,制成统计表和扇形统计图如下:
被抽取学生视力在4.9以下的人数变化情况统计表
 年份 20142015 2016 
 人数300 500 800 
解答下列问题:
(1)扇形统计图中x=10;
(2)该市共抽取了九年级学生2000名;
(3)若该市今年共有九年级学生约8.5万名,请你估计该市九年级学生视力不良(4.9以下)的学生大约有多少名?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,BC是⊙O的直径,点A在⊙O上,AD⊥BC,垂足为D,AB=AE,BE的延长线分别交AD、AC的延长线于点F、G.
(1)求证:AF=FG.
(2)已知tanG=$\frac{1}{2}$,求sin∠CBG的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知,如图所示,在?ABCD中,∠BAD的平分线与BC交于E,∠ABC的平分线交AD于点F,AE,BF交于O,则四边形ABEF为菱形,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,A,B,C是同一平面内的三点,且A与B距离为5,B与C距离为6,A与C距离为8,直线l经过点A,且可以绕点A转动,点P是直线l上的任意一点.
(1)若直线l与线段BC有交点,在图1中画出使BP+PC取最小值的点P,并写出BP+PC的最小值;
(2)如图2.
①若图中表示的是直线l的一个确定的位置,画图表示线段BP长度最小的位置,并说明理由;
②当直线l绕点A转动时,设点B到直线l的距离的最大值为m,直接写出m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知锐角△ABC及其外接圆,AM是边BC的中线,分别过点B,C作外接圆的切线,两条切线交于点N,T是AM上的一点,且∠ATC=∠ABN,求证:$\frac{AB}{AC}=\frac{TB}{TC}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.某移动公司近日推出了如下两种月收费方式.
 收费方式 月租费/元 赠送通话时间/分钟 超时费/(元/分钟)
 A k l 0.2
 B m n 0.1
已知k,l满足$\left\{\begin{array}{l}{2l-7k=1}\\{5k-l=10}\end{array}\right.$设每月的通话时间为x分钟,A、B两种收费方式的收费金额分别为yA元、yB元.
(I)求k,1的值.
(2)如图是yB与x之间的函数关系图象,请根据图象填空:m=10,n=50.
(3)写出yA与x之间的函数关系式.
(4)选择哪种收费方式较合算?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与x轴平行,且与抛物线交于点A和点B,如果△AMB为等腰直角三角形,我们把抛物线上A、B两点之间部分与线段AB围成的图形称为该抛物线的准蝶形,顶点M称为碟顶,线段AB的长称为碟宽.
(1)抛物线y=$\frac{1}{2}$x2的碟宽为4,抛物线y=ax2(a>0)的碟宽为$\frac{2}{a}$.
(2)如果抛物线y=a(x-1)2-6a(a>0)的碟宽为6,那么a=$\frac{1}{3}$.
(3)将抛物线yn=anx2+bnx+cn(an>0)的准蝶形记为Fn(n=1,2,3,…),我们定义F1,F2,…,Fn为相似准蝶形,相应的碟宽之比即为相似比.如果Fn与Fn-1的相似比为$\frac{1}{2}$,且Fn的碟顶是Fn-1的碟宽的中点,现在将(2)中求得的抛物线记为y1,其对应的准蝶形记为F1
①求抛物线y2的表达式;
②请判断F1,F2,…,Fn的碟宽的右端点是否在一条直线上?如果是,直接写出该直线的表达式;如果不是,说明理由.

查看答案和解析>>

同步练习册答案