精英家教网 > 初中数学 > 题目详情

如图所示,五边形ABCDE是张大爷十年前承包的一块土地的示意图. 经过多年开垦荒地,现已变成如图所示的形状,但承包土地与开垦荒地的分界小路( 即图中折线CDE)还保留着,张大爷想过E点修一条直路,直路修好后,要保持直路左边的土地面积与承包时的一样多,右边的土地面积与开垦的荒地面积一样多.请你用有关的几何知识,按张大爷的要求设计出修路方案.(不计分界小路与直路的占地面积).

  (1)写出设计方案,并在图中画出相应的图形;

(2)说明方案设计理由.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,已知边长为4的正方形钢板有一个角锈蚀,其中AF=2,BF=1,为了合理利用这块钢板.将在五边形EABCD内截取一个矩形块MDNP,使点P在AB上,且要求面积最大,求钢板的最大利用率.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,平面直角坐标系中,四边形OABC内接于半圆,其中OA为直径,弦AB=OC=3cm,∠OAB=60°,精英家教网P点从O点出发,以2cm/s的速度向A运动;同时,Q从A点出发,沿边AB向B以1cm/s的速度运动.
(1)求运动x秒后Q点的坐标(用含x的式子表示).
(2)是否存在x,使得PQ∥OB?若存在,则求出x的值;若不存在,说明理由.
(3)求BC的长.
(4)当P、Q运动时,写出五边形OPQBC的面积y与时间x之间的函数关系式,并写出x的取值范围(不包括点P在O、A两点时的情况).求出五边形OPQBC的面积的最小值及此时x的值?

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在边长为4的正方形EFCD上截去一角,成为五边形ABCDE,其中AF=2,BF=1,在AB上取一点P,设P到DE的距离PM=x,P到CD的距离PN=y,试写出矩形PMDN的面积S与x之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

小明参加汽车驾驶培训,在实际操作考试时,被要求进行启动加速、匀速运行、制动减速三个连贯过程,在加速和减速运动过程中,路程和速度均满足关系s=v0t+
12
at2
,v0为加速或减速的起始速度,加速时a为正,减速时a为负,匀速时a=0,加速或减速t秒后的瞬时速度v=v0+at,小明在操作中瞬时速度v与时间t的关系如图所示,其中OA为匀加速,AB为匀速,BC为匀减速.
(1)若减速过程与加速过程完全相反,即BC与OA关于AB的中垂线成轴对称,求BC的解析式.
(2)当0≤t≤300时,求汽车行驶的路程s与时间t的函数关系式.
(3)汽车行驶t秒后,
①若经途中D点,过点D作垂线交AB于点E,试证明汽车行驶的路程恰等于四边形OAED的面积.
②若汽车行驶至M点,过点M做垂线交BC于点N,汽车行驶的路程是否等于五边形OABNM的面积呢?试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,五边形ABCDE中,AB=AE,BC=DE,∠ABC=∠AED,点F是CD的中点.
求证:AF⊥CD.

查看答案和解析>>

同步练习册答案