精英家教网 > 初中数学 > 题目详情
如图,已知E是平行四边形ABCD对角线AC上的点,连接DE.
(1)过点B在平行四边形内部作射线BF交AC于点F,且使∠CBF=∠ADE(要求:用尺规作图,保留作图痕迹,不写作法与证明)
(2)连接BE,DF,判断四边形BFDE的形状并证明.
(1)见解析    (2)见解析
解:(1)如图所示:

(2)四边形BFDE的形状是平行四边形,
理由如下:
∵在平行四边形ABCD中,∴∠DAC=∠ACB,AD=BC,
在△ADE和△CBF中,
∴△ADE≌△CBF(ASA),
∴DE=BF,∠AED=∠BFC,
∵∠DEF=180°﹣∠AED,∠BFE=180°﹣∠BFC,
∴∠DEF=∠BFE,
∴DE∥BF,
∴四边形DEBF是平行四边形.
(1)作∠CBM=∠ADE,其中BM交CD于F即可;
(2)四边形BFDE的形状是平行四边形,连BE、DF,由于△ADE≌△CBF,根据全等三角形的性质得到DE=BF,∠AED=∠BFC,根据等角的补角相等可得∠DEF=∠BFE,则DE∥BF,根据平行四边形的判定即可得到结论.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,△ABC中,O是AC上的任意一点(不与点A、C重合),过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.
(1)求证:OE=OF;
(2)当点O运动到何处时,四边形AECF是矩形,并证明你的结论. 

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

D、E分别是△ABC的边AB、AC的中点.O是平面上的一动点,连接OB、OC,G、F分别是OB、OC的中点,顺次连接点D、E、F、G.
(1)如图1,当点O在△ABC内时,求证:四边形DEFG是平行四边形;
(2)若点O在△ABC外,其余条件不变,点O的位置应满足什么条件,能使四边形DEFG是菱形?请在画2中补全图形,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,把一个矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在A′的位置上.若OB=,,则点A′的坐标         

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC中,∠B=90°,AB=6 cm,BC=8 cm.将△ABC沿射线BC方向平移10 cm,得到△DEF,A,B,C的对应点分别是D,E,F,连结AD.求证:四边形ACFD是菱形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在斜边为3的等腰直角三角形OAB中,作内接正方形A1B1C1D1;在等腰直角三角形OA1B1中,作内接正方形A2B2C2D2;在等腰直角三角形OA2B2中,作内接正方形A3B3C3D3…依次作下去,则第2014个正方形A2014B2014C2014D2014的边长是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

操作与探究:
(1)对数轴上的点进行如下操作:先把点表示的数乘以,再把所得数对应的点向右平移1个单位,得到点的对应点.点在数轴上,对线段上的每个点进行上述操作后得到线段,其中点的对应点分别为.如图1,若点表示的数是,则点表示的数是       ;若点表示的数是2,则点表示的数是       ;已知线段上的点经过上述操作后得到的对应点与点重合,则点表示的数是      

(2)如图2,在平面直角坐标系中,对正方形及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一种实数,将得到的点先向右平移个单位,再向上平移个单位(),得到正方形及其内部的点,其中点的对应点分别为。已知正方形内部的一个点经过上述操作后得到的对应点与点重合,求点的坐标。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,菱形OABC的顶点O在坐标原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕原点顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为(  )
A.(,﹣
B.(﹣
C.(2,﹣2)
D.(,﹣

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在□ABCD中,BD为对角线,E、F分别是AD、BD的中点,连结EF.若EF=3,则CD的长为(    )

A.2             B.3         C.4         D.6

查看答案和解析>>

同步练习册答案