精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0)A(12,0),B(8,6),C(0,6).动点P从点O出发,以每秒3个单位长度的速度沿边向OA终点A运动;动点Q从点B同时出发,以每秒2个单位长度的速度沿边BC向终点C运动.设运动的时间为t秒,PQ=y

1)直接写出y关于t的函数解析式及t的取值范围:   

2)当PQ=3时,求t的值;

3)连接OBPQ于点D,若双曲线经过点D,问k的值是否变化?若不变化,请求出k的值;若变化,请说明理由.

【答案】1;(2;(3

【解析】

1)过点于点,由点的出发点、速度及方向可找出当运动时间为秒时点的坐标,进而可得出的长,再利用勾股定理即可求出关于的函数解析式(由时间路程速度可得出的取值范围);

2)将代入(1)的结论中可得出关于的一元二次方程,解之即可得出结论;

3)连接,交于点,过点于点,利用勾股定理可求出的长,由可得出,利用相似三角形的性质结合可求出,由可得出,在中可求出的值,由可求出点的坐标,再利用反比例函数图象上点的坐标特征即可求出值,此题得解.

解:(1)过点于点,如图1所示.

当运动时间为秒时时,点的坐标为,点的坐标为

|

故答案为:

2)当时,

整理,得:

解得:

3)经过点的双曲线值不变.

连接,交于点,过点于点,如图2所示.

中,

的坐标为

经过点的双曲线值为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD的边长为6EF分别是ABBC边上的点,且∠EDF=45°,将DAE绕点D逆时针旋转90°,得到DCM

(1)求证:EF=MF

(2)AE=2,求FC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一只箱子沿着斜面向上运动,箱高AB1.3cm,当BC2.6m时,点B离地面的距离BE1m,则此时点A离地面的距离是(

A.2.2mB.2mC.1.8mD.1.6m

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABD内接于⊙OAB为⊙O的直径,C为弧AD的中点,CHAB于点E,交AD于点P,交⊙O于点H,连接DH,连接BCAD于点F.下列结论中:①DHCB;②CPPF;③CHAD;④APADCFCB;⑤若⊙O的半径为5AF,则CH.正确的有(  )

A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:正方形绕点顺时针旋转至正方形,连接.

(1)如图,求证:

(2)如图,延长,延长,在不添加任何辅助线的情况下,请直接写出如图中的四个角,使写出的每一个角的大小都等于旋转角.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.5米的正方形.点EF分别在边上,和四边形均由单一材料制成,制成和四边形的三种材料的价格依次为每平方米30元、20元、10元.若将此种地砖按图(2)所示的形式铺设,且中间的阴影部分组成正方形.设

1_________________.(用含有x的代数式表示).

2)已知烧制该种地砖平均每块需加工费0.35元,若要长大于0.1米,且每块地砖的成本价为4元(成本价=材料费用+加工费用),则长应为多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,ABBC34,点E是对角线BD上一动点(不与点BD重合),将矩形沿过点E的直线MN折叠,使得点AB的对应点GF分别在直线ADBC上,当△DEF为直角三角形时,CNBN的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,BE=AF.

(1)求证:四边形ADEF是平行四边形;

(2)若∠ABC=60°,BD=6,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在梯形ABCD中,ADBCBC18DBDC15,点EF分别在线段BDCD上,DEDF5AE的延长线交边BC于点GAFBD于点N、其延长线交BC的延长线于点H

1)求证:BGCH

2)设ADxADN的面积为y,求y关于x的函数解析式,并写出它的定义域;

3)联结FG,当HFGADN相似时,求AD的长.

查看答案和解析>>

同步练习册答案