精英家教网 > 初中数学 > 题目详情

已知OA、OB是⊙O的两条半径,且OA⊥BC,C为OB延长线上任意一点,过点C作CD切⊙O于点D,连接AD,交OC过于点E。

(1)求证:CD=CE;

(2)若将图1中的半径OB所在的直线向上平行移动,交⊙O于,其他条件不变,如图2,那么上述结论CD=CE还成立吗?为什么?

图1

 

图2

 
 


解:(1)△CDE是等腰三角形.理由如下:
连接OD,则OD⊥CD,∠CDE+∠ODA=90°;
在Rt△AOE中,∠AEO+∠A=90°,
在⊙O中,∵OA=OD,
∴∠A=∠ODA,∠CDE=∠AEO,
又∵∠AEO=∠CED,
∴∠CED=∠CDE,
∴CD=CE,
即△CDE是等腰三角形;

(2)结论仍然成立.理由如下:
∵将原来的半径OB所在直线向上平行移动,
∴CF⊥AO于F,
在Rt△AFE中,∠A+∠AEF=90°,
连接OD,则∠ODA+∠CDE=90°,且OA=OD,
故可得∠A=∠ODA,∠AEF=∠CDE,
又∵∠AEF=∠CED,
∴∠CED=∠CDE,
∴CD=CE.
故△CDE是等腰三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

查看答案和解析>>

科目:初中数学 来源: 题型:

查看答案和解析>>

科目:初中数学 来源: 题型:

查看答案和解析>>

科目:初中数学 来源: 题型:

查看答案和解析>>

科目:初中数学 来源: 题型:

查看答案和解析>>

同步练习册答案