【题目】如图,直线AB的解析式为,抛物线与y轴交于点A,与x轴交于点,点P是抛物线上一动点,设点P的横坐标为m.
求抛物线的解析式;
如图,当点P在第一象限内的抛物线上时,求面积的最大值,并求此时点P的坐标;
过点A作直线轴,过点P作于点H,将绕点A顺时针旋转,使点H的对应点恰好落在直线AB上,同时恰好落在坐标轴上,请直接写出点P的坐标.
【答案】(1)抛物线解析式为;(2)当时,面积有最大值,最大值为8,此时P点坐标为;(3)P点坐标为或;
【解析】
(1)先利用直线进行确定则A(0,4),然后利用待定系数法求抛物线解析式;
(2)连接OP,设P(m,-m2+m+4),解方程x+4=0得B(3,0),根据三角形面积公式,利用面积的和差得到S△ABP=S△AOP+S△POB-S△AOB=4m+3(-m2+m+4)-34,然后根据二次函数的性质解决问题;
(3)先利用勾股定理计算出AB=5,讨论:当点P′落在x轴上,如图2,根据旋转的性质得P′H′=PH=4-(-m2+m+4)=m2-m,AH′=AH=m,∠P′H′A=∠PHA=90°,再证明△BP′H′∽△BAO,利用相似得到BH′=m2-m,然后利用AH′+BH′=AB得到m+m2-m=5,解方程求出m即可得到P点坐标;当点P′落在y轴上,如图3,同理可得P′H′=PH=m2-m,AH′=AH=m,∠P′H′A=∠PHA=90°,通过证明△AH′P′′∽△AOB,然后利用相似比得到(m2-m):3=m:4,然后解关于m的方程即可得到对应P点坐标.
解:当时,,则,
把,代入得,解得,
抛物线解析式为;
连接OP,设,
当时,,解得,则,
,
,
当时,面积有最大值,最大值为8,此时P点坐标为;
在中,,
当点落在x轴上,如图2,
绕点A顺时针旋转,使点H的对应点恰好落在直线AB上,同时恰好落在x轴上
,,,
,
∽,
::OB,即::3,
,
,
,解得,舍去,此时P点坐标为;
当点落在y轴上,如图3,
同理可得,,,
,
∽,
::AO,即::4,
整理得,解得,舍去,此时P点坐标为;
综上所述,P点坐标为或;
科目:初中数学 来源: 题型:
【题目】已知:如图所示,△ABC中,∠BAC=90°,AB=AC,分别过点B、C作经过点A的直线l的垂线段BD、CE,垂足分别D、E.
(1)求证:DE=BD+CE.
(2)如果过点A的直线经过∠BAC的内部,那么上述结论还成立吗?请画出图形,直接给出你的结论(不用证明).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,点A(t,1)是平面直角坐标系中第一象限的点,点B,C分别是y轴负半轴和x轴正半轴上的点,连接AB,AC,BC.
(1)如图1,若OB=1,OC =,且A,B,C在同一条直线上,求t的值;
(2)如图 2,当 t =1,∠ACO +∠ACB = 180°时,求 BC + OC -OB 的值;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,△CEF的顶点C、E、F分别与正方形ABCD的顶点C、A、B重合.
(1)若正方形的边长为,用含的代数式表示:正方形ABCD的周长等于 ,△CEF的面积等于 .
(2)如图2,将△CEF绕点A顺时针旋转,边CE和正方形的边AD交于点P. 连结AE, 设旋转角∠BCF=β.
①试证:∠ACF=∠DCE;
②若△AEP有一个内角等于60°,求β的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,垂直平分线段(),点 是线段 延长线上的一点,且,连接,过点作 于点,交的延长线与点.
(1)若 ,则______(用的代数式表示);
(2)线段与线段相等吗?为什么?
(3)若,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用一条直线分割一个三角形,如果能分割出等腰三角形,那么就称这条直线为该三角形的一条等腰分割线.在直角三角形ABC中,∠C=90°,AC=8,BC=6.
(1)如图(1),若 O 为 AB 的中点,则直线 OC_____△ABC 的等腰分割线(填“是”或“不是”)
(2)如图(2)已知△ABC 的一条等腰分割线 BP 交边 AC 于点 P,且 PB=PA,请求出 CP 的长度.
(3)如图(3),在△ABC 中,点 Q 是边 AB 上的一点,如果直线 CQ 是△ABC 的等腰分割线,求线段BQ 的长度等于 ______.(直接写出答案).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.
(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;
(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,AD是△ABC的中线,AE⊥AB,AF⊥AC,且AE=AB,AF=AC,AD=3,AB=4.
(1)求AC长度的取值范围;
(2)求EF的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】完成下面的证明:如图,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD,
求证:∠EGF=90°.
证明:∵AB∥GH(已知),
∴∠1=∠3( ),
又∵CD∥GH(已知),
∴ (两直线平行,内错角相等)
∵AB∥CD(已知),
∴∠BEF+ =180°(两直线平行,同旁内角互补)
∵EG平分∠BEF(已知),
∴∠1= (角平分线定义),
又∵FG平分∠EFD(已知),
∴∠2=∠EFD( ),
∴∠1+∠2=( +∠EFD)
∴∠l+∠2=90°,
∴∠3+∠4=90°(等量代换),
即∠EGF=90°.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com