精英家教网 > 初中数学 > 题目详情
已知如图,AD∥BC,∠ABC=90o,AB=BC,点E是AB上的点,∠ECD=45o,连接ED,过D作DF⊥BC于F.

(1)若∠BEC=75o,FC=4,求梯形ABCD的周长。(4分)
(2)求证:ED=BE+FC.(6分)
(1)12+4 (2)通过证明△DEC≌△EGC(AAS),得ED="EG" 从而得ED="BE+FC"

试题分析:

(1)∵∠ABC=90o,∠BEC=75o
∴∠ECB=15o,∵∠ECD=45o,∴∠DCF=60o
在Rt△DFC中:∠DCF=60o,FC=4, ∴DF=4,DC="8"
由题得,四边形ABFD是矩形∴AB=DF=4
∵AB=BC,∴BC=4
∴BF=BC-FC=4-4,∴AD=BF=4-4
∴梯形ABCD的周长为:4+4+8+4-4=12+4
(2)延长EB至G,使BG=CF,连接CG
∵∠CBG=∠DFC=90o,DF="AB=BC" ∴△CBG≌△DFC(SAS)
∴∠CDF=∠GCB,∵∠CDF+∠DCF=90o,∴∠GCB+∠DCF=90o
∵∠DCE=45o,∴∠ECG=45o
∴∠DCE=∠ECG ∴△DEC≌△EGC(AAS),∴ED="EG"
∴ED="BE+FC"
点评:本题考查矩形,梯形、全等三角形,解答本题需要考生熟悉矩形的性质,梯形的性质,掌握三角形全等的判定方法,以及全等三角形的性质
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图已知四边形ABCD是平行四边形,AC与BD相交于O点,且BC⊥AC,AB=8,∠ABC=30°,

(1)求AD和BD的长;
(2)求平行四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

将矩形纸张ABCD四个角向内折起恰好拼成一个既无缝隙又无重叠的四边形EFGH,若EH=5,EF=12,则矩形ABCD的面积为
A.30B.60C.120D.240

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知在ABCD中,,则ABCD的周长等于  
A.10cmB.20cmC.24cm D.30cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如下图(1),已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1边长按原法延长一倍得到新正方形A2B2C2D2(如图(2));以此下去,则正方形的面积为         

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,五边形ABCDE是由五边形FGHMN经过位似变换得到的,点是位似中心,F、G、H、M、N分别是OA、OB、OC、OD、OE的中点,则五边形ABCDE与五边形FGHMN的面积比是(   )

A.      B.      C.      D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

点P是矩形ABCD的边AD上的一个动点,矩形的两条边AB、AC的
长分别为3和4,那么点P到矩形的两条对角线AC和BD的距离之和是
A.     B.    C.        D.不确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,矩形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,点P在矩形ABCD内.若AB=4cm,BC=6cm,AE=CG=3cm,BF=DH=4cm,四边形AEPH的面积为5cm2,则四边形PFCG的面积为(   )
 
A.5cm2B.6cm2C.7cm2D.8cm2

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1)。图2由弦图变化得到,它是由八个全等的直角三角形拼接而成。记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=21,则S2的值是      

查看答案和解析>>

同步练习册答案