Èçͼ£¬Å×ÎïÏßy=ax2+bx+4ÓëxÖá½»ÓÚA£¨-2£¬0£©¡¢B£¨4¡¢0£©Á½µã£¬ÓëyÖá½»ÓÚCµã£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©TÊÇÅ×ÎïÏ߶ԳÆÖáÉϵÄÒ»µã£¬ÇÒ¡÷ATCÊÇÒÔACΪµ×µÄµÈÑüÈý½ÇÐΣ¬ÇóµãTµÄ×ø±ê£»
£¨3£©M¡¢QÁ½µã·Ö±ð´ÓA¡¢BµãÒÔÿÃë1¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÑØxÖáͬʱ³ö·¢ÏàÏò¶øÐУ¬µ±µãMµ½Ô­µãʱ£¬µãQÁ¢¿ÌµôÍ·²¢ÒÔÿÃë
32
¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÏòµãB·½ÏòÒƶ¯£¬µ±µãMµ½´ïÅ×ÎïÏߵĶԳÆÖáʱ£¬Á½µãÍ£Ö¹Ô˶¯£¬¹ýµãMµÄÖ±Ïßl¡Í¾«Ó¢¼Ò½ÌÍøxÖá½»AC»òBCÓÚµãP£®ÇóµãMµÄÔ˶¯Ê±¼ätÓë¡÷APQÃæ»ýSµÄº¯Êý¹Øϵʽ£¬²¢Çó³öSµÄ×î´óÖµ£®
·ÖÎö£º£¨1£©°ÑA¡¢BµÄ×ø±ê´úÈëÅ×ÎïÏߵĽâÎöʽµÃµ½·½³Ì×飬Çó³ö·½³Ì×éµÄ½â¼´¿É£»
£¨2£©ÉèÖ±Ïßx=1ÉÏÒ»µãT£¨1£¬h£©£¬Á¬½ÓTC¡¢TA£¬×÷CE¡ÍÖ±Ïßx=1£¬´¹×ãÊÇE£¬¸ù¾ÝTA=TCÓɹ´¹É¶¨ÀíÇó³ö¼´¿É£»
£¨3£©£¨I£©µ±0£¼t¡Ü2ʱ£¬¡÷AMP¡×¡÷AOC£¬ÍƳö±ÈÀýʽ£¬Çó³öPM£¬AQ£¬¸ù¾ÝÈý½ÇÐεÄÃæ»ý¹«Ê½Çó³ö¼´¿É£»
£¨II£©µ±2£¼t¡Ü3ʱ£¬×÷PM¡ÍxÖáÓÚM£¬PF¡ÍyÖáÓÚµãF£¬±íʾ³öÈý½ÇÐÎAPQµÄÃæ»ý£¬ÀûÓÃÅä·½·¨Çó³ö×îÖµ¼´¿É£®
½â´ð£º½â£º£¨1£©°ÑA£¨-2£¬0£©£¬B£¨4£¬0£©´úÈëy=ax2+bx+4µÃ£º
4a-2b+4=0
16a+4b+4=0
£¬
½âµÃ£ºa=-
1
2
£¬b=1£¬
¡àÅ×ÎïÏߵĽâÎöʽÊÇ£ºy=-
1
2
x2+x+4£¬
´ð£ºÅ×ÎïÏߵĽâÎöʽÊÇy=-
1
2
x2+x+4£®

£¨2£©ÓÉy=-
1
2
x2+x+4=-
1
2
£¨x-1£©2+
9
2
£¬µÃÅ×ÎïÏߵĶԳÆÖáΪֱÏßx=1£¬
Ö±Ïßx=1½»xÖáÓÚµãD£¬ÉèÖ±Ïßx=1ÉÏÒ»µãT£¨1£¬h£©£¬¾«Ó¢¼Ò½ÌÍø
Á¬½ÓTC¡¢TA£¬×÷CE¡ÍÖ±Ïßx=1£¬´¹×ãÊÇE£¬
ÓÉC£¨0£¬4£©µÃµãE£¨1£¬4£©£¬
ÔÚRt¡÷ADTºÍRt¡÷TECÖУ¬ÓÉTA=TCµÃ32+h2=12+£¨4-h£©2£¬
¡àh=1£¬
¡àTµÄ×ø±êÊÇ£¨1£¬1£©£¬
´ð£ºµãTµÄ×ø±êÊÇ£¨1£¬1£©£®

£¨3£©£¨I£©µ±0£¼t¡Ü2ʱ£¬¡÷AMP¡×¡÷AOC£¬
¡à
PM
CO
=
AM
AO
£¬PM=2t£¬
AQ=6-t£¬
¡àS=
1
2
PM•AQ=
1
2
¡Á2t£¨6-t£©=-t2+6t=-£¨t-3£©2+9£¬
µ±t=2ʱSµÄ×î´óֵΪ8£»
£¨II£©µ±2£¼t¡Ü3ʱ£¬
×÷PM¡ÍxÖáÓÚM£¬×÷PF¡ÍyÖáÓÚµãF£¬
¾«Ó¢¼Ò½ÌÍø
Ôò¡÷COB¡×¡÷CFP£¬
ÓÖ¡ßCO=OB£¬
¡àFP=FC=t-2£¬PM=4-£¨t-2£©=6-t£¬AQ=4+
3
2
£¨t-2£©=
3
2
t+1£¬
¡àS=
1
2
PM•AQ=
1
2
£¨6-t£©£¨
3
2
t+1£©=-
3
4
t2+4t+3=-
3
4
£¨t-
8
3
£©2+
25
3
£¬
µ±t=
8
3
ʱ£¬S×î´óֵΪ
25
3
£¬
×ۺϣ¨I£©£¨II£©SµÄ×î´óֵΪ
25
3
£¬
´ð£ºµãMµÄÔ˶¯Ê±¼ätÓë¡÷APQÃæ»ýSµÄº¯Êý¹ØϵʽÊÇS=-t2+6t£¨0£¼t¡Ü2£©£¬S=
3
2
t2+4t£¨2£¼t¡Ü3£©£¬SµÄ×î´óÖµÊÇ
25
3
£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²é¶Ô½â¶þÔªÒ»´Î·½³Ì×飬Óôý¶¨ÏµÊý·¨Çó¶þ´Îº¯ÊýµÄ½âÎöʽ£¬Èý½ÇÐεÄÃæ»ý£¬¶þ´Îº¯ÊýµÄ×îÖµµÈ֪ʶµãµÄÁ¬½ÓºÍÕÆÎÕ£¬ÄÜ×ÛºÏÔËÓÃÕâЩÐÔÖʽøÐмÆËãÊǽâ´ËÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

8¡¢Èçͼ£¬Ö±Ïßy=ax+bÓëÅ×ÎïÏßy=ax2+bx+cµÄͼÏóÔÚͬһ×ø±êϵÖпÉÄÜÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬Å×ÎïÏßy1=-ax2-ax+1¾­¹ýµãP£¨-
1
2
£¬
9
8
£©£¬ÇÒÓëÅ×ÎïÏßy2=ax2-ax-1ÏཻÓÚA£¬BÁ½µã£®
£¨1£©ÇóaÖµ£»
£¨2£©Éèy1=-ax2-ax+1ÓëxÖá·Ö±ð½»ÓÚM£¬NÁ½µã£¨µãMÔÚµãNµÄ×ó±ß£©£¬y2=ax2-ax-1ÓëxÖá·Ö±ð½»ÓÚE£¬FÁ½µã£¨µãEÔÚµãFµÄ×ó±ß£©£¬¹Û²ìM£¬N£¬E£¬FËĵãµÄ×ø±ê£¬Ð´³öÒ»ÌõÕýÈ·µÄ½áÂÛ£¬²¢Í¨¹ý¼ÆËã˵Ã÷£»
£¨3£©ÉèA£¬BÁ½µãµÄºá×ø±ê·Ö±ð¼ÇΪxA£¬xB£¬ÈôÔÚxÖáÉÏÓÐÒ»¶¯µãQ£¨x£¬0£©£¬ÇÒxA¡Üx¡ÜxB£¬¹ýQ×÷Ò»Ìõ´¹Ö±ÓÚxÖáµÄÖ±Ïߣ¬ÓëÁ½ÌõÅ×ÎïÏß·Ö±ð½»ÓÚC£¬D¾«Ó¢¼Ò½ÌÍøÁ½µã£¬ÊÔÎʵ±xΪºÎֵʱ£¬Ï߶ÎCDÓÐ×î´óÖµ£¬Æä×î´óֵΪ¶àÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬Å×ÎïÏßy=-ax2+ax+6a½»xÖḺ°ëÖáÓÚµãA£¬½»xÖáÕý°ëÖáÓÚµãB£¬½»yÖáÕý°ëÖáÓÚµãD£¬¾«Ó¢¼Ò½ÌÍøOΪ×ø±êÔ­µã£¬Å×ÎïÏßÉÏÒ»µãCµÄºá×ø±êΪ1£®
£¨1£©ÇóA£¬BÁ½µãµÄ×ø±ê£»
£¨2£©ÇóÖ¤£ºËıßÐÎABCDµÄµÈÑüÌÝÐΣ»
£¨3£©Èç¹û¡ÏCAB=¡ÏADO£¬Çó¦ÁµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª£ºÈçͼ£¬Å×ÎïÏߵĶ¥µãΪµãD£¬ÓëyÖáÏཻÓÚµãA£¬Ö±Ïßy=ax+3ÓëyÖáÒ²½»ÓÚµãA£¬¾ØÐÎABCOµÄ¶¥µãBÔÚ¾«Ó¢¼Ò½ÌÍø´ËÅ×ÎïÏßÉÏ£¬¾ØÐÎÃæ»ýΪ12£¬
£¨1£©Çó¸ÃÅ×ÎïÏߵĶԳÆÖ᣻
£¨2£©¡ÑPÊǾ­¹ýA¡¢BÁ½µãµÄÒ»¸ö¶¯Ô²£¬µ±¡ÑPÓëyÖáÏཻ£¬ÇÒÔÚyÖáÉÏÁ½½»µãµÄ¾àÀëΪ4ʱ£¬ÇóÔ²ÐÄPµÄ×ø±ê£»
£¨3£©ÈôÏ߶ÎDOÓëAB½»ÓÚµãE£¬ÒÔµãD¡¢A¡¢EΪ¶¥µãµÄÈý½ÇÐÎÊÇ·ñÓпÉÄÜÓëÒÔµãD¡¢O¡¢AΪ¶¥µãµÄÈý½ÇÐÎÏàËÆ£¬Èç¹ûÓпÉÄÜ£¬ÇëÇó³öµãD×ø±ê¼°Å×ÎïÏß½âÎöʽ£»Èç¹û²»¿ÉÄÜ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª£ºÈçͼ£¬Å×ÎïÏßy=ax2+ax+cÓëyÖá½»ÓÚµãC£¨0£¬-2£©£¬¾«Ó¢¼Ò½ÌÍøÓëxÖá½»ÓÚµãA¡¢B£¬µãAµÄ×ø±êΪ£¨-2£¬0£©£®
£¨1£©Çó¸ÃÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©MÊÇÏ߶ÎOBÉÏÒ»¶¯µã£¬NÊÇÏ߶ÎOCÉÏÒ»¶¯µã£¬ÇÒON=2OM£¬·Ö±ðÁ¬½ÓMC¡¢MN£®µ±¡÷MNCµÄÃæ»ý×î´óʱ£¬ÇóµãM¡¢NµÄ×ø±ê£»
£¨3£©ÈôƽÐÐÓÚxÖáµÄ¶¯Ö±ÏßÓë¸ÃÅ×ÎïÏß½»ÓÚµãP£¬ÓëÏ߶ÎAC½»ÓÚµãF£¬µãDµÄ×ø±êΪ£¨-1£¬0£©£®ÎÊ£ºÊÇ·ñ´æÔÚÖ±Ïßl£¬Ê¹µÃ¡÷ODFÊǵÈÑüÈý½ÇÐΣ¿Èô´æÔÚ£¬ÇëÇó³öµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸