8£®Èçͼ£¬ÒÑ֪˫ÇúÏßy1=$\frac{k}{x}$¾­¹ýµãD£¨6£¬1£©£¬µãCÊÇË«ÇúÏßµÚÈýÏóÏÞ·ÖÖ§ÉϵĶ¯µã£¬¹ýµãC×÷CA¡ÍxÖᣬ¹ýµãD×÷BD¡ÍyÖᣬ´¹×ã·Ö±ðΪA£¬B£¬Á¬½ÓAB£¬BC£®
£¨1£©ÇókµÄÖµ£»
£¨2£©Èô¡÷BCDµÄÃæ»ýΪ12£¬
¢ÙÈôÖ±ÏßCDµÄ½âÎöʽΪy2=ax+b£¬Çóa¡¢bµÄÖµ£»
¢Ú¸ù¾ÝͼÏó£¬Ö±½Óд³öy1£¾y2ʱxµÄÈ¡Öµ·¶Î§£»
¢ÛÅжÏÖ±ÏßABÓëCDµÄλÖùØϵ£¬²¢ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©°ÑµãDµÄ×ø±ê´úÈëË«ÇúÏß½âÎöʽ£¬½øÐмÆËã¼´¿ÉµÃ½â£»
£¨2£©¢ÙÏȸù¾ÝµãDµÄ×ø±êÇó³öBDµÄ³¤¶È£¬ÔÙ¸ù¾ÝÈý½ÇÐεÄÃæ»ý¹«Ê½Çó³öµãCµ½BDµÄ¾àÀ룬ȻºóÇó³öµãCµÄ×Ý×ø±ê£¬ÔÙ´úÈë·´±ÈÀýº¯Êý½âÎöʽÇó³öµãCµÄ×ø±ê£¬È»ºóÀûÓôý¶¨ÏµÊý·¨ÇóÒ»´Îº¯Êý½âÎöʽ½â´ð£»
¢Ú¸ù¾ÝͼÏ󼴿ɵõ½y1£¾y2ʱxµÄÈ¡Öµ·¶Î§£»
¢Û¸ù¾ÝÌâÒâÇó³öµãA¡¢BµÄ×ø±ê£¬È»ºóÀûÓôý¶¨ÏµÊýÓÉ·¨Çó³öÖ±ÏßABµÄ½âÎöʽ£¬¿ÉÖªÓëÖ±ÏßCDµÄ½âÎöʽkÖµÏàµÈ£¬ËùÒÔAB¡¢CDƽÐУ®

½â´ð ½â£º£¨1£©¡ßË«ÇúÏßy=$\frac{k}{x}$¾­¹ýµãD£¨6£¬1£©£¬
¡à$\frac{k}{6}$=1£¬
½âµÃk=6£»

£¨2£©¢ÙÉèµãCµ½BDµÄ¾àÀëΪh£¬
¡ßµãDµÄ×ø±êΪ£¨6£¬1£©£¬DB¡ÍyÖᣬ
¡àBD=6£¬
¡àS¡÷BCD=$\frac{1}{2}$¡Á6•h=12£¬
½âµÃh=4£¬
¡ßµãCÊÇË«ÇúÏßµÚÈýÏóÏÞÉϵĶ¯µã£¬µãDµÄ×Ý×ø±êΪ1£¬
¡àµãCµÄ×Ý×ø±êΪ1-4=-3£¬
¡à$\frac{6}{x}$=-3£¬
½âµÃx=-2£¬
¡àµãCµÄ×ø±êΪ£¨-2£¬-3£©£¬
Ôò$\left\{\begin{array}{l}{-2a+b=-3}\\{6a+b=-2}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{a=\frac{1}{2}}\\{b=-2}\end{array}\right.$£»
¢ÚÓÉͼÏóÖªµ±x£¼-2»ò0£¼x£¼6ʱ£¬y1£¾y2£¬
¢ÛAB¡ÎCD£®
ÀíÓÉÈçÏ£º¡ßCA¡ÍxÖᣬDB¡ÍyÖᣬÉèµãCµÄ×ø±êΪ£¨c£¬$\frac{6}{c}$£©£¬µãDµÄ×ø±êΪ£¨6£¬1£©£¬
¡àµãA¡¢BµÄ×ø±ê·Ö±ðΪA£¨c£¬0£©£¬B£¨0£¬1£©£¬
ÉèÖ±ÏßABµÄ½âÎöʽΪy=mx+n£¬
Ôò$\left\{\begin{array}{l}{mc+n=0}\\{n=1}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{m=-\frac{1}{c}}\\{n=1}\end{array}\right.$£¬
ËùÒÔ£¬Ö±ÏßABµÄ½âÎöʽΪy=-$\frac{1}{c}$x+1£¬
ÉèÖ±ÏßCDµÄ½âÎöʽΪy=ex+f£¬
Ôò$\left\{\begin{array}{l}{ec+f=\frac{6}{c}}\\{6e+f=1}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{e=-\frac{1}{c}}\\{f=\frac{c+6}{c}}\end{array}\right.$£¬
¡àÖ±ÏßCDµÄ½âÎöʽΪy=-$\frac{1}{c}$x+$\frac{c+6}{c}$£¬
¡ßAB¡¢CDµÄ½âÎöʽk¶¼µÈÓÚ-$\frac{1}{c}$£¬
¡àABÓëCDµÄλÖùØϵÊÇAB¡ÎCD£®

µãÆÀ ±¾Ì⿼²éÁËÒ»´Îº¯ÊýÓë·´±ÈÀýº¯ÊýµÄ½»µãÎÊÌ⣬Ö÷ÒªÀûÓÃÁË´ý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ£¬Èý½ÇÐεÄÃæ»ýµÄÇó½â£¬´ý¶¨ÏµÊý·¨ÊÇÇóº¯Êý½âÎöʽ×î³£Óõķ½·¨£¬Ò»¶¨ÒªÊìÁ·ÕÆÎÕ²¢Áé»îÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÏÂÁи÷ÊýÖУ¬ÊÇÎÞÀíÊýµÄÊÇ£¨¡¡¡¡£©
A£®$\sqrt{16}$B£®$\sqrt{7}$C£®$\frac{3}{11}$D£®3.14

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Ä³³¬ÊÐÈç¹û½«½ø»õ¼ÛΪ40ÔªµÄÉÌÆ·°´50ÔªÏúÊÛ£¬¾ÍÄÜÂô³ö500¸ö£¬µ«Èç¹ûÕâÖÖÉÌƷÿ¸öÕǼÛ1Ôª£¬ÆäÏúÊÛÁ¿¾Í¼õÉÙ10¸ö£¬Èç¹ûÄãÊdz¬Êеľ­Àí£¬ÎªÁË׬µÃ8 000ÔªµÄÀûÈó£¬ÄãÈÏΪÊÛ¼Û£¨ÊÛ¼Û²»Äܳ¬¹ý½ø¼ÛµÄ160%£©Ó¦¶¨Îª¶àÉÙ£¿ÕâʱӦ½ø»õ¶àÉÙ¸ö£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Èô²»µÈʽ×é$\left\{\begin{array}{l}{2x-a£¼1}\\{x-2b£¾-3}\end{array}\right.$µÄ½â¼¯ÊÇ-1£¼x£¼3£¬
£¨1£©Çó´úÊýʽ£¨a+1£©£¨b-1£©µÄÖµ£»
£¨2£©Èôa£¬b£¬cΪijÈý½ÇÐεÄÈý±ß³¤£¬ÊÔÇó|c-a-b|+|c-3|µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®´ÓÃÀѧ½Ç¶ÈÀ´Ëµ£¬È˵ÄÉÏÉí³¤ÓëÏÂÉí³¤Ö®±ÈÔ½½Ó½ü»Æ½ð±È0.618ʱԽ¸øÈËÒ»ÖÖÃÀ¸Ð£¬Ä³Å®ÀÏʦÉÏÉí³¤Ô¼61.8cm£¬ÏÂÉí³¤Ô¼93cm£¬ËýÒª´©Ô¼7cmµÄ¸ß¸úЬ²ÅÄÜ´ïµ½»Æ½ð±ÈµÄÃÀ¸ÐЧ¹û£¨¾«È·µ½1cm£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®Èçͼ£¬Ö±Ïßa¡Îb£¬µãAÔÚÖ±ÏßaÉÏ£¬AB¡ÍAC´¹×ãΪA£¬Èô¡Ï1=42¡ã£¬Ôò¡Ï2Ϊ48¶È£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èçͼ£¬µãCÊÇÒÔABΪֱ¾¶µÄ¡ÑOÉϵÄÒ»µã£¬BD¡ÍCD£¬´¹×ãλµãD£¬BCƽ·Ö¡ÏDBA£®
£¨1£©ÇóÖ¤£ºCDÊÇ¡ÑOµÄÇÐÏߣ»
£¨2£©Èô¡ÑOµÄ°ë¾¶³¤Îª5£¬BC=8£¬Çó£ºCDµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÏÂÁÐÄĸöµãÒ»¶¨ÔÚË«ÇúÏßy=$\frac{6}{x}$µÄͼÏóÉÏ£¨¡¡¡¡£©
A£®£¨1£¬5£©B£®£¨-1£¬6£©C£®£¨-1£¬-6£©D£®£¨2£¬-3£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Ê¹º¯Êýy=$\sqrt{x-2}$ÓÐÒâÒåµÄxµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®x£¼2B£®x£¾2C£®x¡Ü2D£®x¡Ý2

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸