精英家教网 > 初中数学 > 题目详情
(2005•奉贤区一模)下列方程没有实数解的是(  )
分析:A,将原式变形为
x2+2
+x2+2=3,然后设
x2+2
=y,利用换元法求解即可求得答案;
B、解此分式方程,可得此分式方程的解为x=2;
C、根据二次根式有意义的条件,即可得此方程无实数解;
D、先平方,然后解一元二次方程,再经过检验,即可求得原方程的解.
解答:解:A、∵
x2+2
+x2+2=3,
x2+2
=y,
则y2+y=3,
解得:y1=
-1+
13
2
>0,y2=
-1-
13
2
<0(舍去),
∴x有实数解,
故本选项错误;
B、方程两边同除以(x2-1)得:2(x+1)=x2+x,
即(x+1)(x-2)=0,
解得:x=-1或x=2,
检验:当x=-1时,x2-1=0,故x=-1不是原分式方程的解,
当x=2时,x2-1≠0,故x=2是原分式方程的解.
故原分式方程的解为:x=2;
故本选项错误;
C、根据题意可得:
x-4≥0
1-x≥0

x≥4
x≤1

∴x无实数解;
故本选项正确;
D、两边平方得:x+2=x2
解得:x=2或x=-1,
当x=2时,左边=2,右边=-2,左边≠右边,舍去;
当x=-1时,左边=1,右边=1,
故方程的解为-1.
故本选项错误.
故选C.
点评:此题考查了无理方程、分式方程、以及一元二次方程的求解方法.此题综合性较强,难度较大,解题的关键是注意排除法在解选择题中的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2005•奉贤区一模)用换元法解分式方程x2+
1
x2
+3=2(x+
1
x
)
,时,若设x+
1
x
=y
,则原方程可化为
y2-2y+1=0
y2-2y+1=0

查看答案和解析>>

科目:初中数学 来源: 题型:

(2005•奉贤区一模)我市某校开展创办“绿色校园”活动,规划到2006年底校园绿化面积达到7200m2,已知2004年底该校的绿化面积为5000m2,设该校绿化面积的平均增长率为x,则可列出方程为
5000(1+x)2=7200
5000(1+x)2=7200

查看答案和解析>>

科目:初中数学 来源: 题型:

(2005•奉贤区一模)在同一平面内,已知点O到直线l的距离为5,以点O为圆心,r为半径画圆,⊙O上有且只有两个点到直线l的距离等于3,则r的取值范围
2<r<8
2<r<8

查看答案和解析>>

科目:初中数学 来源: 题型:

(2005•奉贤区一模)如图,∠1=∠2=∠3,则以下结论正确的是(  )

查看答案和解析>>

同步练习册答案