精英家教网 > 初中数学 > 题目详情
如图所示,D是△ABC的AB边上一点,连接DC,且AC2=AD•AB.
(1)△ADC与△ACB相似吗?
(2)等式AC•BC=AB•DC成立吗?为什么?
分析:(1)先化简AC2=AD•AB可得
AC
AD
=
AB
AC
,根据∠A=∠A即可判定△ADC∽△ACB,即可求出答案.
(2)根据(1)可知△ADC∽△ACB,即可求出
AC
AB
=
DC
BC
,最后求出AC•BC=AB•DC.
解答:解:(1)∵AC2=AD•AB,
AC
AD
=
AB
AC

∵∠A=∠A,且∠A为AD、AC和AB、AC的夹角,
∴△ADC∽△ACB;

(2)成立.
由(1)可知△ADC∽△ACB,根据定义可得;
AC
AB
=
DC
BC

即AC•BC=AB•DC.
点评:本题考查了相似三角形对应边比值相等的性质,考查了相似三角形的判定,本题中求证△ADC∽△ACB是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图所示,CD是AB的垂直平分线,若AC=1.6cm,BD=2.3cm,则四边形ABCD的周长是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

12、如图所示,BE是AB的延长线,量得∠CBE=∠A=∠C
(1)由∠CBE=∠A可以判断
AD
BC
,根据是
同位角相等,两直线平行

(2)由∠CBE=∠C可以判断
CD
AE
,根据是
内错角相等,两直线平行

查看答案和解析>>

科目:初中数学 来源: 题型:

4、已知:如图所示,E是AB延长线上的一点,AE=AC,AD平分∠BAC交BC于点D,BD=BE.求证:∠ABC=2∠C.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,CD是AB的垂直平分线,若AC=10cm,BD=20cm,则四边形ACBD的周长为
60cm
60cm

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,CD是AB的垂直平分线,若AC=2cm,BD=3cm,则四边形ACBD的周长是
10cm
10cm

查看答案和解析>>

同步练习册答案