精英家教网 > 初中数学 > 题目详情
18.如图,一个机器人从点O出发,向正西方向走2m到达点A1;再向正北方向走4m到达点A2;再向正东方向走6m到达点A3;再向正南方向走8m到达点A4;再向正西方向走10m到达点A5;…,按如此规律走下去,当机器人走到点A2017时,点A2017的坐标为(-2008,-2006),.

分析 判断出A2017的位置即可解决问题.

解答 解:观察图象可知,下标为偶数时在二四象限,下标为奇数时在一三象限,除以4余数是3的在第一象限,除以4余数是1的在第三象限,
因为2017=504×4+1,所以A2017在第三象限,坐标为(-2008,-2006),
故答案为(-2008,-2006).

点评 本题考查规律型:点的坐标问题,解题的关键是发现规律,利用规律解决问题,本题的突破点是判定A2017在第三象限,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

8.若x=$\frac{7}{2}$是方程$\frac{2x-1}{3}-\frac{m-3}{6}$=1的解,则m=9.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.某灯泡厂为测量一批灯泡的使用寿命,从中随机抽查了50只灯泡,若抽出的50只灯泡的平均使用寿命为1672h,则这批灯泡的平均使用寿命大约是1672h.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=22,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.

(1)数轴上点B表示的数是-14;点P表示的数是8-5t(用含t的代数式表示)
(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?
(3)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.用适当的符号填空:若b>c>0,则b-c>0,|c-b|>0,$\sqrt{c}$-$\sqrt{b}$<0.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如图,在Rt△ABC中,∠ACB=90°,以点A为圆心,AC长为半径作圆弧交边AB于点D.若  AC=3,BC=4.则BD的长是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图一,AB=AC,BD、CD分别平分∠ABC和∠ACB.问:(答题时,注意书写整洁)
(1)图一中有几个等腰三角形?(写出来,不需要证明)
(2)过D点作EF∥BC,交AB于E,交AC于F,如图二,图中现在增加了几个等腰三角形,选一个进行证明.
(3)如图三,若将题中的△ABC改为不等边三角形,其他条件不变,图中有几个等腰三角形?(写出来,不需要证明)线段EF与BE、CF有什么关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如图,一只昆虫在棱长为20cm的正方体的表面上爬行,则它从图中的顶点A爬到顶点B的最短距离为(  )
A.40cmB.60cmC.$20\sqrt{5}cm$D.$40\sqrt{3}cm$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,已知直线y=x+1与y轴交于点A,一次函数y=kx+b的图象经过点B(0,-1),与x轴以及y=x+1的图象分别交于点C、D,且点D的坐标为(1,n).
(1)则n=2,k=3,b=-1;
(2)求四边形AOCD的面积;
(3)在x轴上是否存在点P,使得以点P,C,D为顶点的三角形是直角三角形?若存在求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案