精英家教网 > 初中数学 > 题目详情

已知:如图梯形ABCD中,AD∥BC,AB=DC,∠B=60°,AD=5cm,BC=9cm.求:
(1)AB;
(2)S梯形ABCD

解:(1)过点D作DE∥AB,交BC于点E,
∵AD∥BC,
∴四边形ADEB是平行四边形,
∴DE=AB,BE=AD=5cm,
∴EC=BC-BE=9-5=4(cm),
∵AB=DC,
∴DE=DC,
∵∠B=60°,
∴△DEC是等边三角形,
∴DC=EC=4cm,
∴AB=4cm;

(2)过点D作DF⊥BC于点F,
∵DE=DF,
∴CF=EC=2(cm),
∵DC=EC=4cm,
∴DF==2(cm),
∴S梯形ABCD=(AD+BC)•DF=×(5+9)×2=14(cm2).
分析:(1)首先过点D作DE∥AB,交BC于点E,易证得四边形ADEB是平行四边形,继而可证得△DEC是等边三角形,继而求得AB;
(2)首先过点D作DF⊥BC于点F,由勾股定理即可求得DF的长,继而求得S梯形ABCD
点评:此题考查了等腰梯形的性质、平行四边形的判定与性质、等腰三角形的判定与性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、已知:如图,△ABC中,AC<AB<BC.
(1)在BC边上确定点P的位置,使∠APC=∠C.请画出图形,不写画法;
(2)在图中画出一条直线l,使得直线l分别与AB、BC边交于点M、N,并且沿直线l将△ABC剪开后可拼成一个等腰梯形.请画出直线l及拼接后的等腰梯形,并简要说明你的剪拼方法.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、已知:如图,△ABC与△BDE都是正三角形,且点D在边AC上,并与端点A、C不重合.求证:(1)△ABE≌△CBD;(2)四边形AEBC是梯形.

查看答案和解析>>

科目:初中数学 来源: 题型:

25、证明题:(1)等腰梯形的对角线交点与同一底的两个端点的距离相等.
已知:如图,等腰梯形ABCD,BC=AD,两对角线相交于O点.
求证:OA=OB.
证明:∵在△ACD与△BDC中
BC=AD(
等腰梯形的性质

∠ADC=∠BCD(
等腰梯形的性质

CD=CD
(公共边)
∴△ACD≌△BDC(
SAS

∴∠1=∠2  (
全等的性质

又∵∠DAB=∠ABC(等腰梯形的性质)
∴∠DAB-∠1=∠ABC-∠2
即:∠3=∠4(
等价代换

OA=OB
( 等角对等边)
(2)已知:如图,△ABC中BE为∠B的角平分线DE∥BC.求证:BD=DE.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读理解题:
已知:如图,△ABC中,AB=AC,P是底边BC上的任一点(不与B、C重合),CD⊥AB于D,PE⊥AB于E,PF⊥AC于F.
求证:CD=PE+PF.
在解答这个问题时,小明与小颖的思路方法分别如下:
小明的思路方法是:过点P作PG⊥CD于G(如图1),则可证得四边形PEDG是矩形,也可证得△PCG≌△CPF,从而得到PE=DG,PF=CG,因此得CD=PE+PF.
小颖的思路方法是:连接PA(如图2),则S△ABC=S△PAB+S△PAC,再由三角形的面积公式便可证得CD=PE+PF.
由此得到结论:等腰三角形底边上任意一点到两腰的距离之和等于一腰上的高.
阅读上面的材料,然后解答下面的问题:
(1)针对小明或小颖的思路方法,请选择俩人中的一种方法把证明过程补充完整
(2)如图3,梯形ABCD中,AD∥BC,∠ABC=60°,AB=AD=CD=2,E是BC上任意一点,EM⊥BD于M,EN⊥AC于N,试利用上述结论
求EM+EN的值.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,△ABC中,AB=AC,BD、CE分别是AC、AB边上的高,连接DE.
求证:(1)△ABD≌△ACE;
(2)四边形BCDE是等腰梯形.

查看答案和解析>>

同步练习册答案