【题目】如图,已知直线l的函数表达式为y=x+3,它与x轴、y轴的交点分别为A、B两点.
(1)若⊙O的半径为2,说明直线AB与⊙O的位置关系;
(2)若△ABO的内切圆圆心是点M,外接圆圆心是点N,则MN的长度是 ;(直接填空)
(3)设F是x轴上一动点,⊙P的半径为2,⊙P经过点B且与x轴相切于点F,求圆心P的坐标.
【答案】(1)直线AB与⊙O的位置关系是相离;(2);(3)(,2).
【解析】
(1)由直线解析式求出A,B的坐标,得出OB,OA的长度,由勾股定理得出AB的长,过点O作OC⊥AB于C,由三角函数定义求出OC2,即可得出结论;
(2)设⊙M分别与OA、OB、AB相切于C、D、E,连接MC、MD、ME、BM,则四边形OCMD是正方形,DE⊥AB,BE=BD,得出MC=MD=ME=OD(OA+OB﹣AB)=1,求出BE=BD=OB﹣OD=2,由直角三角形的性质得出△ABO外接圆圆心N在AB上,得出AN=BNAB,NE=BN﹣BE.在Rt△MEN中,由勾股定理即可得出答案;
(3)连接PB、PF,作PC⊥OB于C,则四边形OCPF是矩形,得出OC=PF=BP=2,设P(x,2),由BP=2,根据两点间的距离公式列方程,解方程即可得出答案.
(1)∵直线l的函数表达式为yx+3,它与x轴、y轴的交点分别为A、B两点,∴当x=0时,y=3;当y=0时,x=4;
∴A(﹣4,0),B(0,3),
∴OB=3,OA=4,
AB5,
过点O作OC⊥AB于C,如图1所示:
∵sin∠BAO,∴,∴OC2,∴直线AB与⊙O的位置关系是相离;
(2)设⊙M分别与OA、OB、AB相切于C、D、E,
连接MC、MD、ME、BM,如图2所示:
则四边形OCMD是正方形,DE⊥AB,BE=BD,∴MC=MD=ME=OD(OA+OB﹣AB)(4+3﹣5)=1,∴BE=BD=OB﹣OD=3﹣1=2.
∵∠AOB=90°,∴△ABO外接圆圆心N在AB上,∴AN=BNAB,∴NE=BN﹣BE2.
在Rt△MEN中,MN.
故答案为:;
(3)连接PB、PF,作PC⊥OB于C,如图3所示:
则四边形OCPF是矩形,∴OC=PF=BP=2.
设P(x,2),由BP=2,得到:,解得:x=,
∴圆心P的坐标为:(,2).
科目:初中数学 来源: 题型:
【题目】某学校为了丰富学生课余生活,决定开设以下体育课外活动项目:A篮球;B乒乓球;C羽毛球;D足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:
(1)这次被调查的学生共有__________人;
(2)请你将条形统计图(1)补充完整;
(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(感知)如图①,在四边形ABCD中,点P在边AB上(点P不与点A、B重合),∠A=∠B=∠DPC=90°.易证:△DAP∽△PBC(不要求证明).
(探究)如图②,在四边形ABCD中,点P在边AB上(点P不与点A、B重合),∠A=∠B=∠DPC.
(1)求证:△DAP~△PBC.
(2)若PD=5,PC=10,BC=9,求AP的长.
(应用)如图③,在△ABC中,AC=BC=4,AB=6,点P在边AB上(点P不与点A、B重合),连结CP,作∠CPE=∠A,PE与边BC交于点E.当CE=3EB时,求AP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=x2+bx+c的图象过点A(1,m),B(3,m),若点M(-2,y1),N(-1,y2),K(8,y3)也在二次函数y=x2+bx+c的图象上,将y1,y2,y3按从小到大的顺序用“<”连接,结果是___________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,点A的坐标为(0,7),点B的坐标为(0,3),点C的坐标为(3,0).
(1)在图中作出△ABC的外接圆(保留必要的作图痕迹,不写作法),圆心坐标为 ______;
(2)若在x轴的正半轴上有一点D,且∠ADB=∠ACB,则点D的坐标为 ______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线A0O方向运动到⊙O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到⊙O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到⊙O上的点A4处;A4A0间的距离是_____;…按此规律运动到点A2019处,则点A2019与点A0间的距离是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了丰富学生校园文化生活,促进学生学习兴趣和能力的提高,我校在初一年级开始设置选修课程,共设立课程12门,下图为其中的四门课程(包括趣味数学、篮球队、戏剧社、合唱团)的参加人数统计图:
(1)学校初一年级参加这四门课程的总人数是 人;
(2)扇形统计图中“趣味数学”部分的圆心角是 度,并把条形统计图补充完整;
(3)学校原则上每一门课程组成一个班,但参加篮球队的学生实在太多,考虑场地因素则分成两个班,合唱团由于课程特征还是组成一个班,求这四门课程平均每班多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在四边形ABCD中,AB∥CD,AD//BC,点E,F在对角线AC上,且AE=CF,请你分别以E,F为一端点,和图中已标字母的某点连成两条相等的新线段(只需证明一组线段相等即可).
(1)连接 ;
(2)结论: = ;
(3)证明:
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知等腰直角三角形ABC,点P是斜边BC上一点(不与B,C重合),PE是△ABP的外接圆⊙O的直径.
(1)求证:△APE是等腰直角三角形;
(2)若⊙O的直径为2,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com