精英家教网 > 初中数学 > 题目详情

【题目】如图一,∠ACB=90°,点D在AC上,DE⊥AB垂足为E,交BC的延长线于F,DE=EB,EG=EB,
(1)求证:AG=DF;
(2)过点G作GH⊥AD,垂足为H,与DE的延长线交于点M,如图二 找出图中与AB相等的线段,并证明.

【答案】
(1)证明:∵DE=EB,EG=EB,DE⊥AB,

∴DE=EB=EB,

∴∠EGD=∠EGD=∠EDB=∠EBD=45°,

∴∠AGD=∠FDB=135°,

∵∠ACB=90°,∠AED=90°,∠ADE=∠FDC,

∴∠A=∠F,

∴∠ADG=∠FBD,

在△ADG和△FDB中

∴△ADG≌△FDB,

∴AG=DF


(2)解:∵DE=EB,EG=EB,

∴DE=EB=EB,∵DE⊥AB,

在△AED和△FEB中,

∴△AED≌△FEB,

∴AE=EM,

∴AE+EB=EM+DE,

即AB=DM


【解析】(1)根据已知条件得到DE=EB=EB,∠EGD=∠EGD=∠EDB=∠EBD=45°,进而证得∠AGD=∠FDB=135°,根据三角形内角和证得∠A=∠F,由三角形外角定理证得∠ADG=∠FBD,根据三角形的判定证得△ADG≌△FDB,由全等三角形的判定即可证得结论;(2)根据已知条件得到△AED≌△FEB,由全等三角形的性质得到AE=EM,即可得到结论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】王阿姨销售草莓,草莓成本价为每千克10元,她发现当销售单价为每千克至少10元,但不高于每千克20元时,销售量y(千克)与销售单价x(元)的函数图象如图所示:
(1)求y关于x的函数解析式,并写出它的定义域;
(2)当王阿姨销售草莓获得的利润为800元时,求草莓销售的单价.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,ADABC的内角平线,交BCD点,DEAB,DFAC,垂足分别为E、F,连结EF,

(1)请根据上述几何语言,画出完整的图形,作∠BAC的角平分线AD要求尺规作图,(保留作图痕迹,不写作法);

(2)判断AD是否为EF的垂直平分线,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,ABC是等边三角形,DE分别是BCAC上一点,且AE=CDAD,ADBE交于P,过BBQADQ,若QP=3cm,PE=1cm,AD的长。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在 ABC中,AD平分 BAC,按如下步骤作图:
第一步,分别以点A、D为圆心,以大于 AD的长为半径在AD两侧做弧,交于两点M、N;
第二步,连接MN分别交AB、AC于点E、F;
第三步,连接DE、DF.
若BD=6,AF=4,CD=3,则BE的长是( ).

A.2
B.4
C.6
D.8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图所示的5×5的方格纸中,每个小正方形的边长为1,点A、B、C均为格点(格点是指每个小正方形的顶点).

(1)按下列要求画图:

标出格点D,使CD∥AB,并画出线段CD;

标出格点E,使CE⊥AB,并画出线段CE.

(2)CDCE的关系是 .

(3)计算△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用圆规、直尺作图,不写作法,但到保留作图痕迹.
已知:线段a,
求作:正方形ABCD,使其对角线AC=a.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,P是第一象限角平分线上的一点,且P点的横坐标为3.把一块三角板的直角顶点固定在点P处,将此三角板绕点P旋转,在旋转的过程中设一直角边与x轴交于点E,另一直角边与y轴交于点F,若POE为等腰三角形,则点F的坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线与双曲线交于两点,且点的横坐标为

1)求的值;

2)若双曲线上一点的纵坐标为8,求的面积;

3)过原点的另一条直线交双曲线两点(点在第一象限),若由点为顶点组成的四边形面积为,求点的坐标.

查看答案和解析>>

同步练习册答案