精英家教网 > 初中数学 > 题目详情
18.列方程或方程组解应用题:
小华自驾私家车从北京到天津,驾驶原来的燃油汽车所需油费99元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.4元,求新购买的纯电动汽车每行驶1千米所需的电费.

分析 设从北京到天津的路程为s千米,根据每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.4元列出方程,解方程即可.

解答 解:设从北京到天津的路程为s千米.
根据题意得,$\frac{99}{s}$-$\frac{27}{s}$=0.4,
解得:s=180,
经检验,s=180是原方程的解.
$\frac{27}{s}$=$\frac{27}{180}$=0.15.
答:新购买的纯电动汽车每行驶1千米所需的电费是0.15元.

点评 本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.某工厂生产的某种产品按质量分为10个档次.第1档次(最低档次)的产品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元,但一天产量减少5件.
(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式;
(2)若生产第x档次的产品一天的总利润为1050元,求该产品的质量档次;
(3)当产品质量达到第几档时,一天所获利润最大?并求出其最大利润?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,等边△OAC的边长是2,点O与原点重合,点B是x轴正半轴上的动点,以AB为边向上作等边△ABE.
(1)如图1,当EB⊥x轴时,求直线CE的解析式;
(2)连接CE,如图2.
①判断CE与BO是否相等,并说明理由;
②设点E的横坐标为m,求点E的坐标(用含m的代数式表示),并判断点E是否一定在(1)中所求的直线CE上,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A和点B在小正方形的顶点上.请你在图1、图2中各画出一个以A,B为顶点的直角三角形,使所画两直角三角形的形状不同(另一顶点为小正方形的顶点).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.方程4x2-kx+6=0的一个根是2,那么k的值和方程的另一个根分别是(  )
A.5,$\frac{3}{4}$B.11,$\frac{3}{4}$C.11,-$\frac{3}{4}$D.5,-$\frac{3}{4}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如果一组数据x1,x2,…,xn的方差是0.6,则另组数据的x1-2013,x2-2013,…,xn-2013的方差是0.6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在平面直角坐标系中,△ABC是⊙O的内接三角形,AB=AC,点P是$\widehat{AB}$的中点,连接PA,PB,PC. 
(1)如图①,若∠BPC=60°,求证:AC=$\sqrt{3}$AP;
(2)如图②,若sin∠BPC=$\frac{24}{25}$,求tan∠PAB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.已知矩形的面积为5,则如图给出的四个图象中,能大致呈现矩形相邻边长y与x之间的函数关系的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.画出一次函数y=-x+3的图象,并判断点(-2,1),(2,1)在不在该函数图象上.

查看答案和解析>>

同步练习册答案