精英家教网 > 初中数学 > 题目详情
(2012•铁岭)如图所示,在平面直角坐标系中,直线OM是正比例函数y=-
3
x的图象,点A的坐标为(1,0),在直线OM上找点N,使△ONA是等腰三角形,符合条件的点N的个数是(  )
分析:本题应该分情况讨论.以OA为腰或底分别讨论.当A是顶角顶点时,AN=OA=1,共有2个,AO=ON=1时,有一个点,若OA是底边时,N是OA的中垂线与x轴的交点,有1个,再利用直线OM是正比例函数y=-
3
x的图象,得出∠AON2=60°,即可得出答案.
解答:解:∵直线OM是正比例函数y=-
3
x的图象,
∴图形经过(1,-
3
),
∴tan∠AON2=
3

∴∠AON2=60°,
若AO作为腰时,有两种情况,
当A是顶角顶点时,N是以A为圆心,以OA为半径的圆与OM的交点,共有1个,
当O是顶角顶点时,N是以O为圆心,以OA为半径的圆与MO的交点,有2个;
此时2个点重合,
若OA是底边时,N是OA的中垂线与直线MO的交点有1个.
以上4个交点有2个点重合.故符合条件的点有2个.
故选:A.
点评:此题考查了坐标与图形的性质及等腰三角形的判定;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•铁岭)如图,在平面直角坐标系中,△ABC经过平移后点A的对应点为点A′,则平移后点B的对应点B′的坐标为
(-2,1)
(-2,1)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•铁岭)如图,点E、F、G、H分别为菱形A1B1C1D1各边的中点,连接A1F、B1G、C1H、D1E得四边形A2B2C2D2,以此类推得四边形A3B3C3D3…,若菱形A1B1C1D1的面积为S,则四边形AnBnCnDn的面积为
(
1
5
)
n-1
S或
S
5n-1
(
1
5
)
n-1
S或
S
5n-1

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•铁岭)如图,AB为⊙O的直径,弦CD垂直平分OB于点E,点F在AB延长线上,∠AFC=30°.
(1)求证:CF为⊙O的切线.
(2)若半径ON⊥AD于点M,CE=
3
,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•铁岭)如图,在斜坡AB上有一棵树BD,由于受台风影响而倾斜,恰好与坡面垂直,在地面上C点处测得树顶部D的仰角为60°,测得坡角∠BAE=30°,AB=6米,AC=4米.求树高BD的长是多少米?(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•铁岭)如图,已知抛物线经过原点O和x轴上一点A(4,0),抛物线顶点为E,它的对称轴与x轴交于点D.直线y=-2x-1经过抛物线上一点B(-2,m)且与y轴交于点C,与抛物线的对称轴交于点F.
(1)求m的值及该抛物线对应的解析式;
(2)P(x,y)是抛物线上的一点,若S△ADP=S△ADC,求出所有符合条件的点P的坐标;
(3)点Q是平面内任意一点,点M从点F出发,沿对称轴向上以每秒1个单位长度的速度匀速运动,设点M的运动时间为t秒,是否能使以Q、A、E、M四点为顶点的四边形是菱形?若能,请直接写出点M的运动时间t的值;若不能,请说明理由.

查看答案和解析>>

同步练习册答案