精英家教网 > 初中数学 > 题目详情
11.如图,正比例函数y=kx经过点A(2,4),AB⊥x轴于点B.
(1)求该正比例函数的解析式;
(2)将△ABO绕点A逆时针旋转90°得到△ADC,求点C的坐标;
(3)试判断点C是否在直线y=$\frac{1}{3}$x+1的图象上,说明你的理由.

分析 (1)将点A(2,4)代入y=kx,利用待定系数法即可求出该正比例函数的解析式;
(2)先由AB⊥x轴于点B,且A(2,4),得出OB=2,AB=4.再根据旋转的性质得出AD=AB=4,DC=OB=2,即D点横坐标为6,C点纵坐标是2,进而求出点C的坐标;
(3)把点C的坐标(6,2)代入y=$\frac{1}{3}$x+1,即可判断.

解答 解:(1)∵正比例函数y=kx经过点A(2,4),
∴2k=4,解得k=2,
∴该正比例函数的解析式为y=2x;

(2)∵AB⊥x轴于点B,且A(2,4),
∴OB=2,AB=4.
∵将△ABO绕点A逆时针旋转90°得到△ADC,
∴AD=AB=4,DC=OB=2,
∴D点横坐标为6,C点纵坐标是2,
∴点C的坐标为(6,2);

(3)把点C的坐标(6,2)代入y=$\frac{1}{3}$x+1,
得左边=2,右边=$\frac{1}{3}$×6+1=3,
左边≠右边,
即点C不在直线y=$\frac{1}{3}$x+1的图象上.

点评 本题考查了待定系数法求正比例函数的解析式,旋转的性质,一次函数图象上点的坐标特征,是基础知识,难度适中.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

1.若a<b,则下列不等式一定成立的是(  )
A.$\frac{b}{a}$>1B.$\frac{a}{b}$<1C.-a>-bD.a-b>0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.在边长为1的正方形网格中,△ABC的位置如图所示:
(1)把△ABC向下平移4个单位后,再向右平移2个单位,请你画出平移后的图形.
(2)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,正方形ABCD的边长为4,点P为线段AD上的一动点(不与点A、D重合),以BP为直径作半圆,圆心为点O,半圆O边BC交于点K,线段OF∥AD,且与CD相交于点F,与半圆O相交于点E,设AP=x.
(1)当x为何值时,四边形OBKE为菱形;
(2)当半圆O与CD相切时,试求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,△ABC、△ADE都是等边三角形,点G为射线BD,CE的交点.
(1)求证:BD=CE;
(2)若AB=2,AE=1,将△ADE绕点A旋转.
①当∠EAC=60°时,求GB的长;
②点N为CE的中点,在整个旋转过程中,求线段AN长的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.已知抛物线y=ax2+bx+8(a≥1)过点D(5,3),与x轴交于点B、C(点B、C均在y轴右侧)且BC=2,直线BD交y轴于点A.
(1)求抛物线的解析式;
(2)在坐标轴上是否存在一点N,使△ABN与△BCD相似?若存在,求出点A、N的坐标;若不存在,请说明理由.
(3)在直线BD上是否存在一点P和平面内一点Q,使以Q、P、B、C四点为顶点的四边形为菱形?若存在,请直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,四边形ABCO是平行四边形,OA=2,AB=6,点C在x轴的负半轴上,将?ABCO绕点O顺时针旋转α°(0<α<90°)得到?DEFO,点A的对应点点D恰好落在x轴的正半轴上,且DE经过点A.
(1)若点F在反比例函数y=$\frac{k}{x}$(x<0)的图形上,求α及k的值.
(2)求旋转过程中?ABCO扫过的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.下列二次根式中属于最简二次根式的是(  )
A.$\sqrt{24}$B.$\sqrt{36}$C.$\sqrt{11}$D.$\sqrt{20}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.计算$\root{3}{-8}$+$\sqrt{9}$的结果是1.

查看答案和解析>>

同步练习册答案