精英家教网 > 初中数学 > 题目详情

【题目】如图,有三张背面完全相同的纸牌A,B,C,其中正面分别画有三种不同的几何图形,小华将这3张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张,请你用画树状图或列表的方法,求摸出的两张纸牌面上所画几何图形既是轴对称图形又是中心对称图形的概率.

【答案】解:画树状图为:
共有9种等可能的结果数,其中摸出的两张纸牌面上所画几何图形既是轴对称图形又是中心对称图形的结果数为,
所以摸出的两张纸牌面上所画几何图形既是轴对称图形又是中心对称图形的概率=
【解析】画树状图为展示所有9种等可能的结果数,再找出摸出的两张纸牌面上所画几何图形既是轴对称图形又是中心对称图形的结果数,然后根据概率公式求解.
【考点精析】通过灵活运用列表法与树状图法,掌握当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,把直角△ABC的斜边AC放在定直线l上,按顺时针的方向在直线l上转动两次,使它转到△A2B1C2的位置,设AB= ,BC=1,则顶点A运动到点A2的位置时,点A所经过的路线为(
A.( + )π
B.( + )π
C.2π
D. π

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,D、E分别是AB、AC的中点,下列说法中不正确的是(
A.DE= BC
B.
C.△ADE∽△ABC
D.SADE:SABC=1:2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC=10,点D是BC边上的一动点(不与B、C重合),∠ADE=∠B=∠α,DE交AB于点E,且tan∠α= ,有以下的结论:①△DBE∽△ACD;②△ADE∽△ACD;③△BDE为直角三角形时,BD为8或 ;④0<BE≤5,其中正确的结论是(填入正确结论的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直角坐标系中,已知点A(﹣2,0),B(0,4),C(0,3),过点C作直线交x轴于点D,使得以D,O,C为顶点的三角形与△AOB相似,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,过点D作DE⊥AB于点E.
(1)求证:DE是⊙O的切线;
(2)若AC=10,BC=16,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AD、BE是两条中线,则SABP:SEDP=(
A.1:2
B.1:3
C.1:4
D.2:3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整. 原题:如图1,在△ABC中,点D、E、Q分别在AB、AC、BC上,且DE∥BC,AQ交DE于点P,求证:

(1)尝试探究:在图1中,由DP∥BQ得△ADP△ABQ(填“≌”或“∽”),则 = , 同理可得 = ,从而
(2)类比延伸:如图2,在△ABC中,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG、AF分别交DE于M、N两点,若AB=AC=1,则MN的长为
(3)拓展迁移:如图3,在△ABC中,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG、AF分别交于DE于M、N两点,AB<AC,求证:MN2=DMEN.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为(
A.2
B.8
C.2
D.2

查看答案和解析>>

同步练习册答案