精英家教网 > 初中数学 > 题目详情
正方形ABCD的边长是6,分别以A,D为圆心,6为半径在正方形内作弧,圆O与AB,弧BD,弧AC都相切,求圆O的面积.

【答案】分析:连接OA、OD、OM,过O作OE⊥AD于E,设⊙O的半径是R,推出AE=OM=R,DE=6-R,OA=6-R,OD=6+R,由勾股定理得出DO2-DE2=OA2-AE2,推出方程(6+R)2-(6-R)2=(6-R)2-R2,求出R的值即可.
解答:
解:连接OA、OD、OM,过O作OE⊥AD于E,
设⊙O的半径是R,则AE=OM=R,DE=6-R,
由相切两圆的性质得:OA=6-R,OD=6+R,
由勾股定理得:OE2=DO2-DE2=OA2-AE2
即(6+R)2-(6-R)2=(6-R)2-R2
解得:R=1,
即圆O的面积是π×12=π,
答:圆O的面积是π.
点评:本题考查了相切两圆的性质,正方形性质,勾股定理的应用,主要考查了学生对相切两圆的性质的运用,用了方程思想.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网附加题
如图所示,正方形ABCD的边长为7,AE=BF=CG=DH=3,甲、乙两只蚂蚁同时从A点出发,甲蚂蚁以每秒
3
5
的速度沿路线AE→EF→FG→GH→HE→EB→BC→CD→DA循环爬行;乙蚂蚁以每秒
4
5
的速度沿路线AH→HG→GF→FE→EH→HD→DC→CB→BA循环爬行.那么出发后两只蚂蚁在第
 
s第一次相遇.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD的边长为4,P为对角线AC上一点,且CP=3
2
,PE⊥PB交CD于点E,则PE=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

正方形ABCD的边长为4,P是BC上一动点,QP⊥AP交DC于Q,设PB=x,△ADQ的面积为y.
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)(1)中函数若是一次函数,求出直线与两坐标轴围成的三角形面积;若是二次函数,请利用配方法求出抛物线的对称轴和顶点坐标;
(3)画出这个函数的图象;
(4)点P是否存在这样的位置,使△APB的面积是△ADQ的面积的
23
?若存在,求出BP的长;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知正方形ABCD的边长为12cm,E为CD边上一点,DE=5cm.以点A为中心,将△ADE按顺时针方向旋转得△ABF,则点E所经过的路径长为
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边长为6,点M在边DC上,M,N两点关于对角线AC对称,若DM=2,则tan∠ADN=
3
2
3
2

查看答案和解析>>

同步练习册答案