精英家教网 > 初中数学 > 题目详情
4.如图,在?ABCD中,AB=3,AD=5,∠BCD的平分线交BA的延长线于点E,则AE的长为(  )
A.3B.2.5C.2D.1.5

分析 由平行四边形ABCD中,CE平分∠BCD,可证得△BCE是等腰三角形,继而利用AE=BE-AB,求得答案.

解答 解:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC=5,
∴∠E=∠ECD,
∵CE平分∠BCD,
∴∠BCE=∠ECD,
∴∠E=∠BCE,
∴BE=BC=5,
∴AE=BE-AB=5-3=2;故选:C.

点评 此题考查了平行四边形的性质以及等腰三角形的判定与性质.能证得△BCE是等腰三角形是解此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

14.将半径为5的圆形纸片,按如图方式折叠,若$\widehat{AB}$和$\widehat{BC}$都经过圆心O,则图中阴影部分的面积是$\frac{25}{3}$π.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.在一次数学课上,张老师布置了一项作业:以Rt△ABC(如图所示)的两直角边AB,BC为邻边作矩形ABCD,下面是小钟和小国各自的作法:
小钟作法:
(1)作AC的垂直平分线MN,垂足为点O;
(2)连接BO,并延长BO至点D,使DO=BO;
(3)连接AD,CD
所以,四边形ABCD就是所要求作的矩形 
小国作法:
(1)分别以A,C为圆心,以BC,AB为半径作弧,两弧交于点D;
(2)连接AD,CD.
所以,四边形ABCD就是所要求作的矩形.
小孟说:“他们的作法都错误.”你的观点是(  )
A.小钟的作法正确B.小国的作法正确
C.小钟和小国的作法都正确D.赞同小孟的观点

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.东坡商贸公司购进某种水果的成本为20元/kg,经过市场调研发现,这种水果在未来48天的销售单价p(元/kg)与时间t(天)之间的函数关系式为p=$\left\{\begin{array}{l}{\frac{1}{4}t+30(1≤t≤24,t为整数)}\\{-\frac{1}{2}t+48(25≤t≤48,t为整数)}\end{array}\right.$,且其日销售量y(kg)与时间t(天)的关系如表:
时间t(天)136102040
日销售量y(kg)1181141081008040
(1)已知y与t之间的变化规律符合一次函数关系,试求在第30天的日销售量是多少?
(2)问哪一天的销售利润最大?最大日销售利润为多少?
(3)在实际销售的前24天中,公司决定每销售1kg水果就捐赠n元利润(n<9)给“精准扶贫”对象.现发现:在前24天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求n的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图1,在矩形ABCD中,动点P从点B出发,以每秒2个单位长度,沿BC-CD-DA运动至点A停止,设点P运动的时间为x秒,△ABP的面积为y.如果y关于x的变化情况如图2所示,则△ABC的面积是(  )
A.10B.20C.40D.80

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,在Rt△ABC中,∠ABC=90°,点M是AC的中点,以AB为直径作⊙O分别交AC,BM于点D,E.
(1)求证:MD=ME;
(2)填空:
①若AB=6,当AD=2DM时,DE=2;
②连接OD,OE,当∠A的度数为60°时,四边形ODME是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.已知一次函数y=kx+5和y=k′x+7,假设k>0且k′<0,则这两个一次函数的图象的交点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图,△OAB绕点O逆时针旋转90°到△OCD的位置,已知∠AOB=40°,则∠AOD的度数为50°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.下面的每组图形中,平移左图可以得到右图的一组是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案