【题目】已知:如图,矩形ABCD中,AB=2cm,AD=3cm.点P和点Q同时从点A出发,点P以3cm/s的速度沿A→D方向运动到点D为止,点Q以2cm/s的速度沿A→B→C→D方向运动到点D为止,则△APQ的面积S(cm2)与运动时间t(s)之间函数关系的大致图象是( )
A.B.
C.D.
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为a,E.F分别是边AD、BC的中点,点G在CD上.且,DF、EG相交于点H.
(1)求出的值;
(2)求证:EG⊥DF;
(3)过点H作MN∥CD,分别交AD、BC于点M、N,点P是MN上一点,当点P在什么位置时,△PDC的周长最小,并求△PDC周长的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx过A(4,0) B(1,3)两点,点C 、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H
(1)求抛物线的解析式.
(2)直接写出点C的坐标,并求出△ABC的面积.
(3)点P是抛物线BA段上一动点,当△ABP的面积为3时,求出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】打折前,买20件A商品和30件B商品要用2200元,买50件A商品和10件B商品要用2900元.若打折后,买40件A商品和40件B商品用了3240元,比不打折少花多少钱?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=-x2+bx+c与x轴相交于A(-1,0),B(5,0)两点.
(1)求抛物线的解析式;
(2)在第二象限内取一点C,作CD垂直x轴于点D,链接AC,且AD=5,CD=8,将Rt△ACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值;
(3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点B在x轴上,∠ABO=90°,AB=BO,直线y=﹣3x﹣4与反比例函数y=交于点A,交y轴于C点.
(1)求k的值;
(2)点D与点O关于AB对称,连接AD、CD,证明△ACD是直角三角形;
(3)在(2)的条件下,点E在反比例函数图象上,若S△OCE=S△OCD,求点E的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设△ABC,点P是平面内的任意一点(A、B、C三点除外),若点P与点A、B、C中任意两点的连线的夹角为直角时,则称点P为△ABC的一个勾股点.
(1)如图1,若点P是△ABC内一点,∠A=50°,∠ACP=10°,∠ABP=30°,试说明点P是△ABC的一个勾股点.
(2)如图2,Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D是AB的中点,点P在射线CD上,若点P是△ABC的勾股点,则CP= ;
(3)如图3,四边形ABDC中,DB=DA,∠BCD=45°,AC=,CD=3.则点D能否是△ABC的勾股点,若能,求出BC的长:若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC是等边三角形,AD⊥BC于点D,点E是直线AD上的动点,将BE绕点B顺时针方向旋转60°得到BF,连接EF、CF、AF.
(1)如图1,当点E在线段AD上时,猜想∠AFC和∠FAC的数量关系;(直接写出结果)
(2)如图2,当点E在线段AD的延长线上时,(1)中的结论还成立吗?若成立,请证明你的结论,若不成立,请写出你的结论,并证明你的结论;
(3)点E在直线AD上运动,当△ACF是等腰直角三角形时,请直接写出∠EBC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(感知)如图①,点C是AB中点,CD⊥AB,P是CD上任意一点,由三角形全等的判定方法“SAS”易证△PAC≌△PBC,得到线段垂直平分线的一条性质“线段垂直平分线上的点到线段两端的距离相等”
(探究)如图②,在平面直角坐标系中,直线y=-x+1分别交x轴、y轴于点A和点B,点C是AB中点,CD⊥AB交OA于点D,连结BD,求BD的长
(应用)如图③
(1)将线段AB绕点A顺时针旋转90°得到线段AB′,请在图③网格中画出线段AB;
(2)若存在一点P,使得PA=PB′,且∠APB′≠90°,当点P的横、纵坐标均为整数时,则AP长度的最小值为______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com