精英家教网 > 初中数学 > 题目详情
如图所示,AB是⊙O的直径,C为圆上一点,CD⊥AD于D且AC平分∠DAB,连接OC,那么DC是⊙O的切线吗?为什么?
分析:DC为圆O的切线,理由为:由AC为角平分线得到一对角相等,再由半径OA=OC,利用等边对等角得到一对角相等,等量代换得到∠DAC=∠OCA,由CD垂直于AD,得到∠ADC为直角,根据直角三角形的两锐角互余得到一对角互余,等量代换可得出∠OCA+∠DCA=90°,即∠OCD为直角,可得出OC与CD垂直,则CD为圆O的切线,得证.
解答:解:DC是圆O的切线,理由为:
∵AC平分∠DAB,
∴∠DAC=∠OAC,
又∵OA=OC,
∴∠OCA=∠OAC,
∴∠DAC=∠OCA,
又∵CD⊥AD,即∠ADC=90°,
∴∠DAC+∠DCA=90°,
∴∠OCA+∠DCA=90°,即∠OCD=90°,
∴OC⊥CD,
则CD是圆O的切线.
点评:此题考查了切线的判定,利用了转化及等量代换的思想,熟练掌握切线的判定方法是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,AB是⊙O的直径,AD是弦,∠DBC=∠A.
(1)求证:BC与⊙O相切;
(2)若OC∥AD,OC交BD于点E,BD=6,CE=4,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,AB是⊙O的直径,AD是弦,∠DBC=∠A,OC⊥BD于点E.
(1)求证:BC是⊙O的切线;
(2)若BD=12,EC=10,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,AB是⊙O的直径,弦CD⊥AB于点P,CD=10cm,AP:PB=1:5,则⊙O的半径为
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,AB是⊙O直径,OD⊥弦BC于点F,且交⊙O于点E,且∠AEC=∠ODB.
(1)判断直线BD和⊙O的位置关系,并给出证明;
(2)当AB=10,BC=8时,求△DFB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,AB是⊙O直径,∠D=35°,则∠BOC等于(  )

查看答案和解析>>

同步练习册答案