精英家教网 > 初中数学 > 题目详情
如图,抛物线与x轴交于点A(-1,0)、B(3,0),与y轴交于点C(0,3).

(1)求抛物线的解析式及顶点D的坐标;
(2)若点P是抛物线第一象限上的一个动点,过点P作PQ∥AC交x轴于点Q.当点P的坐标为           时,四边形PQAC是平行四边形;当点P的坐标为                 时,四边形PQAC是等腰梯形. (利用备用图画图,直接写出结果,不写求解过程).
(3)若P为线段BD上的一个动点,过点P作PM⊥x轴于点M,求四边形PMAC的面积的最大值和此时点P的坐标
(1),(1,4);(2)(2,3);();(3)四边形PMAC的面积取得最大值为,此时点P的坐标为().

试题分析:(1)将抛物线的解析式设为交点式,可用待定系数法较简捷地求得抛物线的解析式,将其化为顶点式即可求得顶点D的坐标.
(2)①如图1,四边形PQAC是平行四边形时,
∵CP∥x轴,点P在抛物线上,∴点P与点C关于抛物线的对称轴x=1对称.
∵C(0,3),∴P(2,3).
②如图2,四边形PQAC是等腰梯形时,设P(m,),
过点P作PH⊥x轴于点H,则H(m,0).
易得△ACO∽△QNP,∴.
∵OA=1,OC=3,HP=,∴,即.
∴AQ=AO+OH-QH=。∴.
又由勾股定理得,.
由四边形PQAC是等腰梯形得AQ=CP,即AQ2=CP2
,整理得,解得.
时,由①知CP∥AQ,四边形PQAC是平行四边形,不符合条件,舍去.
时,CP与AQ不平行,符合条件。∴P().

(3)求出直线BD的解析式,设定点P的坐标,由列式,根据二次函数最值原理,即可求得四边形PMAC的面积的最大值和此时点P的坐标.
试题解析:(1)∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A(-1,0)、B(3,0),
∴可设抛物线的解析式为.
又∵抛物线y=ax2+bx+c(a≠0) 与y轴交于点C(0,3),
,解得.
∴抛物线的解析式为,即.
又∵,∴抛物线顶点D的坐标为(1,4).
(2)(2,3);().
(3)设直线BD的解析式为
由B(3,0),D(1,4)得,解得.
∴直线BD的解析式为.
∵点P在直线PD上,∴设P(p,).
则OA=1,OC=3,OM= p,PM=.
 .
,∴当时,四边形PMAC的面积取得最大值为,此时点P的坐标为().
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

将抛物线y=(x﹣1)2+3向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为(  )
A.y=(x﹣2)2B.y=(x﹣2)2+6C.y=x2+6D.y=x2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线轴于两点(的左侧),交轴于点,顶点为

(1)求点的坐标;
(2)求四边形的面积;
(3)抛物线上是否存在点,使得,若存在,请求出点的坐标;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

将函数y=2x2的图象向右平行移动1个单位,再向上平移5个单位,可得到的抛物线是(      )
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

一个二次函数解析式过点(3,1);当x>0时 y随x增大而减小;当x为2时函数值小于7,请写出符合要求的二次函数解析式______________   

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某工厂生产某品牌的护眼灯,并将护眼灯按质量分成15个等级(等级越高,质量越好.如:二级产品好于一级产品).若出售这批护眼灯,一级产品每台可获利21元,每提高一个等级每台可多获利润1元,工厂每天只能生产同一个等级的护眼灯,每个等级每天生产的台数如下表表示:
等级(x级)
一级
二级
三级

生产量(y台/天)
78
76
74

(1)已知护眼灯每天的生产量y(台)是等级x(级)的一次函数,请直接写出与之间的函数关系式:_____;
(2)每台护眼灯可获利z(元)关于等级x(级)的函数关系式:______;
(3)若工厂将当日所生产的护眼灯全部售出,工厂应生产哪一等级的护眼灯,才能获得最大利润?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

将抛物线y=x2+1先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数关系式是(  )
A.y=(x+2)2+2B.y=(x+2)2-2
C.y=(x-2)2+2D.y=(x-2)2-2

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若A(),B(),C()为二次函数y=x²+4x-5 的图象上的三点,则的大小关系是(     ) 
A.B.C. D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数的图像如图所示,则点Q()在(   )
A.第一象限 B.第二象限 C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案