精英家教网 > 初中数学 > 题目详情

a为任意实数,则下列等式中恒成立的是

[  ]
A.

aaa2

B.

a×a=2a

C.3a3-2a2a

D.2a×3a2=6a3

练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读理解:对于任意正实数a、b,∵(
a
-
b
)2
≥0,∴a-2
ab
+b
≥0,∴a+b≥2
ab
,只有当a=b时,等号成立.
结论:在a+b≥2
ab
(a、b均为正实数)中,若ab为定值p,则a+b≥2
p
,只有当a=b时,a+b有最小值2
p
.   
根据上述内容,回答下列问题:
(1)若m>0,只有当m=
 
时,m+
1
m
有最小值
 

若m>0,只有当m=
 
时,2m+
8
m
有最小值
 

(2)如图,已知直线L1y=
1
2
x+1
与x轴交于点A,过点A的另一直线L2与双曲线y=
-8
x
(x>0)
相交于点B(2,m),求直线L2的解析式.
(3)在(2)的条件下,若点C为双曲线上任意一点,作CD∥y轴交直线L1于点D,试求当线段CD最短精英家教网时,点A、B、C、D围成的四边形面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

实践与探究:

对于任意正实数a、b,∵≥0, ∴≥0,∴

只有当a=b时,等号成立。

结论:在(a、b均为正实数)中,若ab为定值p,则a+b≥,只有当a=b时,a+b有最小值。   根据上述内容,回答下列问题:

(1)若m>0,只有当m=       时,有最小值         

若m>0,只有当m=       时,2有最小值        .

(2)如图,已知直线L1与x轴交于点A,过点A的另一直线L2与双曲线相交于点B(2,m),求直线L2的解析式.

(3)在(2)的条件下,若点C为双曲线上任意一点,作CD∥y轴交直线L1

于点D,试求当线段CD最短时,点A、B、C、D围成的四边形面积.

 

查看答案和解析>>

科目:初中数学 来源: 题型:

实践与探究:
对于任意正实数a、b,∵≥0, ∴≥0,∴
只有当a=b时,等号成立。
结论:在(a、b均为正实数)中,若ab为定值p,则a+b≥,只有当a=b时,a+b有最小值。  根据上述内容,回答下列问题:
(1)若m>0,只有当m=      时,有最小值        
若m>0,只有当m=      时,2有最小值       .
(2)如图,已知直线L1与x轴交于点A,过点A的另一直线L2与双曲线相交于点B(2,m),求直线L2的解析式.

(3)在(2)的条件下,若点C为双曲线上任意一点,作CD∥y轴交直线L1
于点D,试求当线段CD最短时,点A、B、C、D围成的四边形面积.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读理解:对于任意正实数ab,∵()2≥0,∴a-2b≥0,∴ab≥2,只有当ab时,等号成立.
结论:在ab≥2ab均为正实数)中,若ab为定值p,则a+b≥2,只有当ab时,ab有最小值2.  根据上述内容,回答下列问题:
(1)若m>0,只有当m      时,m有最小值        
m>0,只有当m      时,2m有最小值       .
(2)如图,已知直线L1:y=x+1与x轴交于点A,过点A的另一直线L2与双曲线y=
x>0)相交于点B(2,m),求直线L2的解析式.

(3)在(2)的条件下,若点C为双曲线上任意一点,作CDy轴交直线L1于点D,试
求当线段CD最短时,点ABCD围成的四边形面积.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年江苏省江阴长泾片八年级下学期期中考试数学卷(带解析) 题型:解答题

实践与探究:
对于任意正实数a、b,∵≥0, ∴≥0,∴
只有当a=b时,等号成立。
结论:在(a、b均为正实数)中,若ab为定值p,则a+b≥,只有当a=b时,a+b有最小值。  根据上述内容,回答下列问题:
(1)若m>0,只有当m=      时,有最小值        
若m>0,只有当m=      时,2有最小值       .
(2)如图,已知直线L1与x轴交于点A,过点A的另一直线L2与双曲线相交于点B(2,m),求直线L2的解析式.

(3)在(2)的条件下,若点C为双曲线上任意一点,作CD∥y轴交直线L1
于点D,试求当线段CD最短时,点A、B、C、D围成的四边形面积.

查看答案和解析>>

同步练习册答案