精英家教网 > 初中数学 > 题目详情

【题目】抛物线上部分点的横坐标,纵坐标的对应值如下表:

小聪观察上表,得出下面结论:抛物线与轴的一个交点为函数的最大值为;③抛物线的对称轴是;④在对称轴左侧,增大而增大.其中正确有(

A. 0 B. 1 C. 2 D. 3

【答案】D

【解析】

根据表中数据和抛物线的对称形,可得到抛物线的开口向下,当x=3时,y=0,即抛物线与x轴的交点为(-2,0)和(3,0);因此可得抛物线的对称轴是直线x=3- = ,再根据抛物线的性质即可进行判断.

根据图表,当x=-2,y=0,根据抛物线的对称形,当x=3时,y=0,即抛物线与x轴的交点为(-2,0)和(3,0);
∴抛物线的对称轴是直线x=3-=
根据表中数据得到抛物线的开口向下,
∴当x=时,函数有最大值,而不是x=0,或1对应的函数值6,
并且在直线x=的左侧,y随x增大而增大.
所以①③④正确,②错.
故选:D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD中,AB=10cmBC=8cmCD=12cm∠B=∠C,点EAB的中点.如果点P在线段BC上以3cm/s的速度沿B-C-B运动,同时,点Q在线段CD上由C点向D点运动.当点Q的运动速度为_______cm/s时,能够使△BPE≌△CQP.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:

反比例函数y=(k>0)第一象限内的图象如图1所示,点P、R是双曲线上不同的两点,过点P、R分别做PA⊥y轴于点A,RC⊥x轴于点C,两垂线交点为B.

(1)问题提出:线段PB:PA与BR:RC有怎样的关系?

问题解决:设点PA=n,PB=m,则点P的坐标为(n,),点R的坐标为(m+n,),AO=BC=,RC=,BR= =

则BR:RC=

PB:PA=

∴PB:PA=BR:RC.

问题应用:

(2)利用上面的结论解决问题:

①如图1,如果BR=6,CR=3,AP=4,BP=_____

②如图2,如果直线PR的关系式y2=﹣x+3,与x轴交于点D,与y轴交于点E,若ED=3PR,求出k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】近几年来,为了缓减环境污染,某区加大了对煤改电的投资力度,该区居民在2015年有7500户完成煤改电,2017年有10800户完成了煤改电.

(1)求该区2015年至2017年完成煤改电户数的年平均增长率;

(2)2018年该区计划要完成煤改电的户数比2017年要有所增长,但增长率不超过15%,请求出2018年最多有多少户能完成煤改电.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=nx2﹣3nx﹣4n(n<0)与x轴交于B、C两点(点B在点C的左侧),且抛物线与y轴交于点A.

(1)点B的坐标为   ,点C的坐标为   

(2)若∠BAC=90°,求抛物线的解析式.

(3)点M是(2)中抛物线上的动点,点N是其对称轴上的动点,是否存在这样的点M、N,使得以A、C、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数轴交点的横坐标为,则对于下列结论:

①当时,

②方程有两个不相等的实数根

其中正确的结论有________(只需填写序号即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,在RtABC中,∠ACB=90°AC=4BC=2点,DAC中点,将△ABD沿BD所在直线折叠,使点A落在点P处,连接PC
1)写出BPBD的长;
2)求证:四边形BCPD是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ADBC上的高,tanB=cos∠DAC.

(1)求证:AC=BD;

2)若sinC=BC=12,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本题满分8分)

如图,点EF在BC上,BE=CF,A=D,B=C,AF与DE交于点O.

(1)求证:AB=DC;

(2)试判断OEF的形状,并说明理由.

查看答案和解析>>

同步练习册答案