在平面直角坐标系xOy中,已知二次函数的图像经过原点及点A(1,2),与x轴相交于另一点B(3,0),将点B向右平移3个单位得点C.
(1)求二次函数的解析式;
(2)点M在线段OC上,平面内有一点Q,使得四边形ABMQ为菱形,求点M坐标;
(3)点P在线段OC上,从O点出发向C点运动,过P点作x轴的垂线,交直线AO于D点,以PD为边在PD的右侧作正方形PDEF(当P点运动时,点D、点E、点F也随之运动);
①当点E在二次函数的图像上时,求OP的长;
②若点P从O点出发向C点做匀速运动,速度为每秒1个单位长度,若P点运动t秒时,直线AC与以DE为直径的⊙M相切,直接写出此刻t的值.
(1)y=-x2+3x;(2)(1,0)或(3-2,0)或(3+2,0);(3)或.
解析试题分析:(1)可设二次函数的解析式为y=ax2+bx+c,利用二次函数的图象经过原点及点A(1,2),B(3,0),分别代入求出a,b,c的值即可;
(2)分M是AB的垂直平分线与x轴的交点;M在B点左边并且BM=AB;M在B点右边并且BM=AB;三种情况讨论可得点M坐标;
(3)①过A点作AH⊥x轴于H点,根据DP∥AH,得出△OPD∽△OHA,进而求出OP的长;
②分两种情况讨论,求出t的值即可.
试题解析:(1)设二次函数的解析式为y=ax2+bx+c,
∵二次函数的图象经过原点及点A(1,2),B(3,0),
∴,
解得.
故二次函数解析式为:y=-x2+3x;
(2)M是AB的垂直平分线与x轴的交点,点M坐标是(1,0);
M在B点左边并且BM=AB,点M坐标是(3-2,0);
M在B点右边并且BM=AB,点M坐标是(3+2,0);
故点M坐标为(1,0)或(3-2,0)或(3+2,0);
(3)①由已知可得C(6,0)
如图:过A点作AH⊥x轴于H点,
∵DP∥AH,
∴△OPD∽△OHA,
∴,
即,
∴PD=2a,
∵正方形PDEF,
∴E(3a,2a),
∵E(3a,2a)在二次函数y1=-x2+3x的图象上,
∴a=;
即OP=.
②直线AC与以DE为直径的⊙M相切,此刻t的值为:或.
考点:二次函数综合题.
科目:初中数学 来源: 题型:解答题
如图,在平面直角坐标系中,直线与抛物线y=ax2+bx-3(a≠0)交于A、B两点,点A在x轴上,点B的纵坐标为5.点P是直线AB下方的抛物线上的一动点(不与点A、B重合),过点P作x轴的垂线交直线AB于点C,作PD⊥AB于点D.
(1)求抛物线的解析式;
(2)设点P的横坐标为m.
①用含m的代数式表示线段PD的长,并求出线段PD长的最大值;
②连结PB,线段PC把△PDB分成两个三角形,是否存在适合的m的值,使这两个三角形的面积比为1:2.若存在,直接写出m的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
在平面直角坐标系中,已知二次函数的图象与轴相交于点,顶点为,点在这个二次函数图象的对称轴上.若四边形是一个边长为2且有一个内角为的菱形.求此二次函数的表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
已知二次函数与x轴交于A(1,0)、B(3,0)两点;二次函数的顶点为P.
(1)请直接写出:b=_______,c=___________;
(2)当∠APB=90°,求实数k的值;
(3)若直线与抛物线L2交于E,F两点,问线段EF的长度是否发生变化?如果不发生变化,请求出EF的长度;如果发生变化,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,直角梯形OABC中,AB∥OC,点A坐标为(0,6),点C坐标为(3,0),BC=,一抛物线过点A、B、 C.
(1)填空:点B的坐标为 ;
(2)求该抛物线的解析式;
(3)作平行于x轴的直线与x轴上方的抛物线交于点E 、F,以EF为直径的圆恰好与x轴相切,求该圆的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,其中A点坐标为(-1,0), 点C(0,5),点D(1,8)在抛物线上,M为抛物线的顶点.求
(1)抛物线的解析式;
(2)求△MCB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,在平面直角坐标系中,O为坐标原点,点A、B的坐标分别为(8,0)、(0,6).动点Q从点O、动点P从点A同时出发,分别沿着OA方向、AB方向均以1个单位长度/秒的速度匀速运动,运动时间为t(秒)(0<t≤5).以P为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为C、D,连接CD、QC.
(1)求当t为何值时,点Q与点D重合?
(2)设△QCD的面积为S,试求S与t之间的函数关系式,并求S的最大值;
(3)若⊙P与线段QC只有一个交点,请直接写出t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
某菜农搭建了一个横截面为抛物线的大棚,尺寸如图:
(1)如图建立平面直角坐标系,使抛物线对称轴为y轴,求该抛物线的解析式;
(2)若需要开一个截面为矩形的门(如图所示),已知门的高度为1.60米,那么门的宽度最大是多少米(不考虑材料厚度)?(结果保留根号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com